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The derived differential equations govern a coupled linear thermoelastic behaviour in the frame of
the Kirchhoff-Love model with the neglected effect of shell element rotary inertia. Then an abstract
Cauchy problem for a coupled system by two differcntial equations in the Hilbert space is defined. It gener-
alizes a series of coupled thermoelastic problems including those considered previously (Kirchhoff-Love and
Timoshenko-type shells). All considerations are valid for a wide class of initial and boundary value problems.
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1. INTRODUCTION

It is well known that heat transfer and/or mechanical load over the surface of a shell
causes instability effects, excessive wear and even cracking [1-8]. Therefore, a stress—
strain state of a shell with variable thickness by means of the Mindlin model is consid-
ered. The shell is deformated due to surface and mass loading and both heat sources
and heat exchange with a surrounding medium. Then using some assumptions the
heat transfer equation is formulated, and the initial and boundary conditions are
defined. The heat transfer conditions represented by a temperature ficld on the shell
surface, heat flow density and heat transfer though the shell’s surface are additionally
attached. Next an abstract, coupled problem is considered, which is the main topic of
the paper. First, its relation to the shell behavior is illustrated and then existence and
uniqueness of solutions are proved.

2. FUNDAMENTAL ASSUMPTIONS AND HYPOTHESES

We consider a shallow shell with variable thickness with the surface £2; and (as a three-
dimensional body) the volume £,. We assume that the shell material is isotropic,
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homogeneous and elastic. We introduce the orthogonal co-ordinate system x, p,z in a
typical way (see {11, p. 16). The co-ordinate lines x,y are shifted and they overlap
with curvatures of the averaged surface. The z axis has normal direction to the averaged
surface turned into a shell curvature center.

The displacement vector components of a point (x, y) of the averaged shell surface
in the time z is denoted by u(x,y. 1), v(x,» 1), w(x,y,{); the rotation angles of
the normal to the averaged surface are denoted by ¥.(x,y, 1), ¥ (x,y, ) in the planes
xz and yz, correspondingly; the initial shell curvatures along x,y by k. and %,
correspondingly; the variable shell thickness is denoted by A(x, y}.

We investigate stress—strain state of the shell using the kinematic Timoshenko type
model with effects of rotary element inertia [1] (it is referred to also as the Mindlin
model). It is assumed that shell fibers normal to the averaged surface are not curved
before deformation, but they are not perpendicular to the averaged surface as well.
Deformation of the normal fibers to the averaged surface is defined by the condition
of a plane strain state. We assume that on the equidistant shell surface, the following
relations are satisfied (see [1], p. 34):

371 = E11 = 2€11, 852 = £33 + Zemn, 872 = &12 + zeya, (1)
gy = €13, &3 =&, @
where {z| <Jh(x,y),e5(i,j =1,2) — tangential deformations of the averaged surface,

€13, 23 — shear deformations, e;(iy=1,2) — bending deformations.
As a result the following equations are obtained:

_Ou Wy — v W ey Bu+ v 3)
g1 = ax x W 22 = By y s 12 = ay 3xs
Law, 3, 9w, 9y,
e =—o-, en= % e = 5 “
ow ow
= — = —_—
13 st & v, + % (5)

It should be emphasized that deformations 1y, 2, 12, 13, 23 are small in comparison to
unity, and therefore the derivatives of deformations can be negligible in comparison
with the deformations mentioned.

Suppose that in a non-deformable and non-strained (initial) state, the shell has the
temperature Ty. The surface and mass loading, internal heat sources and heat exchange
with a surrounding medium causes a shell deformation, which results in a change of
its temperature. We denote a shell temperature increase in comparison with the initial
state in the point (x,y,z) and in the time ¢ by 8(x,y,z f). We also assume that
|8/Tol <« 1, i.e. that a temperature change is small enough and it had no significant
influence on elastic and thermodynamic properties of the shell material. The following
isothermal constants are used: E, Young modulus; v, Poisson ratio; ar, linear heat
expansion coefficient; p, density; Ay, thermal conductivity; ¢, heat volume capacity
(for the constant deformation tensor).
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In addition, assuming that the shell is in the condition of the local quasi-equilibrium
(see [3], p. 24) and using the thermodynamic relations, we get the following Duhamel-
Neuman law for small deformations and for an increase in temperature (see [8], p. 79):

1 v 1 v
eh = -E"Uzz - EC’H +orf, &, = Eﬂrzz - -E-Gu + arb, (6)
v
£33 = —E(Gn + 02) + arb, )]
2(1+v) 2(1+v) 2(1+v)
£, = 7o g5 = 7o £y = 7 o (8)

which defines a link between the stress tensor components o; and the deformation
tensor ¢}, for the condition of the flat strain-state (633 =0). From (6) and (8) we get

E E
on =1z E tven) —y—ert, (12, ©)

(10)

E E E
P TR BT Ry

Integrating (9) and (10) with respect to z and taking into account {1}+5), we find the
corresponding stresses and transversal forces on the averaged surface:

/2 Eh [ou oy
= /:‘,2 T vz)[ﬁ mhovt "(5‘ “’)]

11
. 2 amn
—_ 0dz, (xoyuov,le)
L—v/ 4
/2 Eh ou I

S= d Ealr-wraeesall B a s 12
/:.,f“ P T AT (ay+ax) @

/2 K2Eh aw
Qx = —mmdz_-Z_(Tv)( x+§) Corlo, ™

where 1/k2 = (1/h) Jfﬁz fAz/h)ydz = _f;:z FAE)dE, f(z/h)—function characterizing
a way of tangential distribution along thickness (see [1], pp. 35-37). The stresses are
integrated (taking into account (1), (3) and (4)) with respect to the shell thickness
and we obtain the moments

/2 ER (3V, 3V,
M= [m M= T =) (EJ“ "a_y)

/2
_Eor f fzdz, (x oy, 1e2), 14
1—vi s
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/2 3
B (224 2) 5

H= dr=—
PR YT ) ox

3. DIFFERENTIAL EQUATIONS

Using the entropy balance equation and taking into account a link between the heat
flow vector components and the thermodynamic forces due to the Fourier rule, we
get the heat transfer equation (see [8], p. 87):

c 08 ELI.'TTO
*or 1-

where the underlined term links a temperature increase with a speed of the volume
change.
In this equation, ¢a(x, y, z, £) denotes the power capacity of the internal heat sources.
In order to obtain the equations governing the shell vibrations, the inertial forces
of the shell element in the x,y and z directions, as well as the rotary inertia related
to x and y are included. The following differential equations are obtained (in relation
to displacements) [1]:

— A Vo= - (5211 + &5 +e3) + @, (16)

oN, 0§ Fu

o +_3;+P1—ph-8t_2:0 xxeyuovlel), a7
an aQy Fw
N, — = 18
F % + kN + kN, +q1 — pha 0, (18)
oM, oH W Pw,
ax 7}’- —Qx— pE_BtT =0, (xe)), (19)

where p,, p2, q; are the external load intensities related to the axes x, y and z,

Substituting (11)(15) into Eqs. (17)H19) and attaching the heat transfer equation
(16) transformed according to (1), (3), (4), (7), (9), the following full systems of
differential equations governing the thermoelastic behavior are obtained:

Pu E 2 v v E 3 du I
e L R | e [ e

Egp 3 42
r_— 8dz=p), (x y,uevp ©p), (20)
l—vox —k/2

R N )

~a _Evz) [(kx + vk )( xw) +(ky + vkx)( yw)]

EGT

+ (kx+ky)f 0dz = qi, 20
1—v —hf2
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h3 By, 8 N Yy 1—v3 e Yy k*Eh aw
12798 E[ (ax+ W)]_ 2 5[”(3*5)]‘2(1“)("’”55)

Ear 3 ("2
l—_va _hlzgdz —0, (x Ad y), (22)

Y, EarTyd[du 3
ol + 85 — gV + = [ 4

1—v at|ax ay_(k +ky)w+z(:’+8¢y)]_q2_ @3

ay

B B Ty(1+v)
PD=ta=vy *Taa iv)(] —2u)° 24)

Equations (20)—(23) represent the full system of equations of the coupled dynamical
linear thermoelasticity problem. Note that no constraints are applied to the tempera-
ture field distribution along the shell thickness and therefore the equations with
different dimensions are obtained. The # function appearing in the heat transfer
equation (parabolic type) depends on x,y,z and time ¢. The functions u, v, w, ¥, ¥,
in the equations governing a shell element motion (hyperbolic type) depend on two
co-ordinates x,y and time ¢.

The obtained Timoshenko type-model yvields the equations governing the thermo-
elastic behavior of the shallow shell in the frame of the Kirchhoff~Love model. After
omitting the effect of transversal shear deformation, we get [1]:

aw Bw

In addition, the underlined term, whicb governs the rotary inertia of the shell
elements, is also neglected. Therefore, we obtain

#w  ®w\ Eoar f’z
Mx=-D (Bx T By)_l—v LB Ee 0
#w
oM, oH
0 = ax 5, (x < »). (28)

Substituting (28) into (18) and attaching Eq. (17), we get the following system of
equations governing a motion of the shell element

ON: 38 Fu

o +$—|—pl—-ph§—0, xoepnuovlel),

*M, PH &M, Fw

" +28x8y+ P 2+ k:Nx + KNy +q1 — ph—5 o =0. 29)
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Furthermore, we substitute (11), (12), (26), (27) into (29) and attach the general heat
transfer equation (23), previously transformed according to (25). As a result we get:

#Fu E 3§ u o E 3 oy
. l—vzax[”[ ~Kaw +"(ay "’“’)]]'2(1+v)5[”(5+5§)]

Ea;r_q-
1 —vax —h12

32w »* Fw  Fw # Fw
v (5 5) | 2005 (o)

E{o(G )|l

1 -
Eor /2
+(ky + vks) (—- = kyw)] [v2 f Oz dz + (ke + k) de] 7
—hf/2

l—v —hy

Gdz =p1, (xoyuevpp), (30)

@3n

ce(l +s)—-x v 4 L2rTod [3“ id

= 3|5 —(kx + k))w —zV w] q2. 32)

The system of differential equations (30)(32) governs a coupled dynamical problem
of the linear themoelasticity within the frame of the Kirchhoff-Love mode! (with the
neglected effect of shell element rotary inertia).

4. BOUNDARY AND INITIAL CONDITIONS

Now an initial state of the shell, as well as the conditions responsible for both
mechanical and heating processes between the shell and surrounding medium, will be
defined. The initial and boundary conditions result from a stationary condition of
the corresponding Hamilton functionals.

As the initial conditions attached to Eqs. (30}-(32) we take (for ;=0) the initial dis-
placements distribution u, v and w, the velocities distribution (3u/at), (ov/9r), (9w /1),
and the temperature increase  (the last one is equivalent to the temperature field
applied in the inijtial time moment), of the form:

u[!:ﬂ = uﬂ(xay)! vll:O = vO(x: y): w|£=0 = wﬂ(xsy): (33)

du av

5 M= ul(xa y)) -3-1- ’=0—' vl(xsy)s _37 r=0‘—' W[(x,y), (34)
9|t=0 = Bo(x’ Vs Z)l (35)

where (x, y) € 4, (x, ¥, 2) € 83, Uy, Vo, W, U1, v1, W1, Oy — given functions.
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In spite of the initial conditions (33)}+(35) attached to the differential equations
(20)—(23), a distribution (for ¢ = 0) of the rotary angles ¥, ¥, and the angular velocities
(3 /81), (8y,/80) should be defined:

Vxli—o = ¥xo(x, ¥), Yyl = WyO(x,J’)’ (36)
el _ Wyl _
Bt -0 - lt’x, (X,J’), at o - 'l’y; (x’y)) (37)

where (x,y) € 1, ¥xy, ¥y, ¥, ¥y, — given functions.
One of the known heat transfer conditions [4] can be applied in each point of the shell
surface 9§25:

— temperature field on the shell surface

8 =6(x,y,z2,1), (38)
— heat flow density

o =0053,2,0), (9

— heat transfer through the shell surface

; + a8 =87(x,y,2,t), a=const>0, (40)
where (x,y,2z) € 8Q,¢ € [0, T],6°,6°,6% — given functions; T—observation time of the

shell behavior.
For the Kirchhoff-Love model (Eqs. (30}-(32)) conditions on the shell edge 852; have
the following form (four boundary conditions are attached to each edge point):

u=10(x,y,0) or Nyny+Sn,=A,y,90, (41)
v="(x,30 or Nyny + 8Sn, = B(x,y, 1, (42)
=Wyt or (Mx 2H), (2 +aH
b ax Ay " a  x
3
+ ﬁ[(Myny + Hnny, — (Myny + Hnpny) = CO(x, y, 1), (43)
a_: =wl(%,3,8) of My +2Hnn, + My = D(x,,0), (44)
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where (x, y) € 32, t €[0, T], n, n, are components of the external normal to the contour
982;,0/0n, 3/ds — differential operators in the normal and tangential direction to
3,10, wP, wl, 4%, B, C, DY —given functions.

In the case of the Timoshenko-type model (Eqs. (20)(23)) five mechanical conditions
are attached to each point of the contour 3L, i.e. those given by (41), (42) and
additional three:

w= wo(x, y: t) or . Q.rnx + anx = Eo(x: J’, t): (45)
Vs =V3(x,5,8) or M.+ Hn, = F'(x,,1) (46)
Yy =¥ (50,0 or My, + Hn =G%x,»,9), 47

where (x,) € Q2,1 € [0, T], w®, ¥2, ¥, E®, F°, G given functions.

In cach pair of the alternative boundary conditions (41)(47), the first boundary
eondition belongs to the main one (i.e. it is @ priori given during the search for a
stationary point of the Hamilton functional). The second boundary condition, called
an essential ome, results indirectly from a stationary condition of the Hamilton
functional. In the case of a rectangular shell, the given conditions are reported in
many monographs [1,2,5].

The following mechanical boundary conditions are attached (for rectangular shells):

— a simple support on elastic non-stretched (non-compressed) ribs in the tangential
plane of a rib

u_ W _
w_a_v_ p =1y, =0, x=-econst, (48)
Fw
w—a—xz_-a—v_o, X = const, 49
— a loosely clamped edge
o
w=u=v=—ﬁ£=¢ry=0, X = const, (50)
Pw
w=a?=u=v=0, X = const, (51)
—~ a clamped edge
w=u=v=yy=19y,=0, x=const, (52)
aw
w=a=u=v=0, x=const, x & y,u < % (53)

Conditions (48), (50), (52) correspond to the Timoshenko-type model, whereas
conditions (49), (51), (53) do correspond to the Kirchhoff-Love model. Each of
the mentioned groups of boundary conditions (when a homogeneous boundary
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condition (38) is satisfied on the lateral shell surface) become a special case of general
conditions (41}{44) (Kirchhoff-Love shell) or (41), (42), (45)«(47) (Timoshenko-type
model). For instance, in the group of conditions (48), the conditions w=v=1,=0
are equivalent to homogeneous main conditions (45}, (42), (47), whereas the conditions
du/dx =, /dx=0 are equivalent to homogeneous essential conditions (41), (46),
and so on.

5. ABSTRACT COUPLED PROBLEM

An abstract Cauchy problem for a system coupled by two differential equations in
the Hilbert space will be stated. It generalizes a series of coupled thermoelastic
problems. It also includes the above discussed thermoelastic problems of shallow
shells for Kirchhoff-Love and Timoshenko-type shells. First, a necessary notation is
introduced.

Let H be a certain Hilbert space. Let L,(0, T'; H) be a space of the functions being
measured of the time interval [0, 7], having the values on H and summed in [0, T]
with the pth degree of a norm (sufficiently bounded for p=oc), where the norm for
P < oo is defined in the following way

T i/p
el 0,7 = [ fo @5 dt] .
whereas for p =00, by relation

Nzl . = sup ess|lu(®)iz.
|Loo(o,r.m OSSPT Nz

The space of the measured functions () is denoted by W;‘(O, T, H) and their
values belonging to A have (in the interval [0, T]) the generalized derivatives (in the
Sobolev sense) 1 (f) up to kth order, which are summed with the pth degree of a
norm (sufficiently bounded for p =o0). The space W;‘(O, T; H) for p < oo is attached
to the norm

T k l/p
Nullwro,ram) = [ A P G] A dt] ,

=0

whereas for p=oco to the norm
k
leellv 0,76 = Sup ess > fu(®)llg.
O=tsT =0

For 1<p<oc each of the spaces L,(0, T; H), W"(O T; HYk=1,2,...), is a Banach
space. The spaces Ly(0, T; H), W"‘(O T; H) are Hllbert spaces and a scalar product is
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defined as follows
T
R f @, D)y dt,
O f Z(u(ﬂ(t) () b,

The Sobolev space of the measured functions u(x) is denoted by WX(Q) and the
functions are defined in the Q space of the n-dimensional arithmetic space R” and
they have all the generalized derivatives D"u(x) up to the kth order, which are
summed with second power in . o= {0y, ...,o,) denotes an integer multi-index
of differentiation, |o| =ay,...,a,D*=D},..., D% D;3/3,; —a Sobolev gencral
differentiation operator. The space Wk(Q)IS a Hxlberc space and a scalar product
(in this space) is defined by .

(u, v)ué(g) = f Z: D*uD"vdQ.
Qlal<k

For k=0 the space W¥(S2) overlaps the Lebesque space Ly(Q).

Let H,,...,H, be Hilbert subspaces. H, x.--x H, denotes their Descartes
product, i.e. the Hilbert space is composed of all possible ordered elements
# = {w}i,, where u; € H; with the attached scalar product

(ﬁ: ‘-P}Hl o X H,py = (uls vl)H[ +---+ (um, vm)Hm-

Let u(x ) be a certain measured function, defined for x € 2 C R, ¢ € [0, T] having its
values in R™ and the following property: For all t € [0, T] the funcuon “x—> u(x, )"
belongs to a certain Hilbert space of the type WZ‘(S'?.) X ere X Wz"'(Q) Each of these
functions is identified with the mapping wu(f), which maps an arbitrary number
t € [0, T'] into the function “x— u(x, f)”" as an element of H. Therefore, the following
notation is defined |lu(8}]lz, G(o), v(t))H,llu(t)HWt(OT o, (8 V)Wk(o 7:m), Where u, v are the
functions depending on x, ¢.

In the case of contl_nuous and continuously differentiable functions, we use the usual
notations: C(), C¥(Q), C([0, T}; H).

Let A be a self-conjugated positively defined and (possibly) unbounded operator
acting in the Hilbert space H. According to the definition of D{4), we identify the
Hilbert space with the same elements and with the scalar product (i, v), =(4u, Av)s.
Therefore, the notation L,(0, T; D(4)), WE(0, T; D(4)) is defined.

The notation introduce above is valid throughout the whole further work.

Let H, H, be two subspaces of the Hilbert space. We define the Cauchy problem for
two differential equations

LW'(6) + Lw(?) + M8(H) = 1(2), (54)
LE(6) + K6(t) + Nw'(f) = g2(1), (55

w(0) = wo, W(O)=wi, 60)=6, (56)
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where w, g are the sought functions mapping the interval of time [0, T'] to H; and H>,
correspondingly; g;, g,—given functions satisfying the conditions

g1 € L0, T; Hy), g € L0, T; Ha); (57

I, I-bounded self-conjugated, positively defined operators acting on H, and H,,
correspondingly; L, K—bounded, self-conjugated positively defined operators acting
on H; and H,, correspondingly and defined on continuous manifolds D{L)C H,,
D(K)C H,, where the inverse operators L™!, k! are fully continnous; M, N — linear
unbounded operators acting from H, to H,, and from H; to H; and linked by the
relation N C — M*, i.e. for two arbitrary clements w € D(N), 8 € D(M), the following
“link condition” holds

(M8, W)y, + (Mw,0), =0, (58)

D(K) c D(M ), D(L'*) c D(N), the bounded operators MK, NL~'/2 are similar to the
operators acting from H,— H;, and H; — H,. The operator L™Y2MK ' can be
extended to the bounded operator from H, to Hy; wg, w, 8y — given clements satisfying
the conditions

Wy € D(Lllz), wy € Hy, e Hf. (59)
Dermrrion 1.1, The ordered pair of the functions {w,q} is called a generalized solution
of the Cauchy problem (54)~(56), if we W (0, T; H) N Loo(0, T; D(L/3)), w(0) = wy,
8 € Loo(0, T; H))NLy(0, T; D(K'/?)) and for the arbitrary functions v,n, satisfy-

ing the conditions ve W}0,T; Hyn L0, T; D(LY2),W(T) = 0,5 € Wi (0, T; Hy)N
Ly(0, T; D(KY2)), n(T) = 0 the following relations hold

f ' =@w @, v )a, + (LM2w(e), LV v()g,
Y]

T
4 (L_UZMB(I), Ll/zv(t)Hl] dt — (Lyw1,v(0))g, = ./; (g1(0), V() dt, (60)

T .
fﬂ [~ (B8, 7 (), + (K20(8), K00, — (Nw() 7/ ()]t

T
— (L2600, 1(0)) g, — (Nwon(0))gr, = jo- (8200, n()w, . (61)

DsrNtTION 1.2, The ordered pair of function {w, q} is called a “classical” solution to the
Cauchy problem (54)-(56), if

w e W30, T; H) N WL, T; DILY) N Loo(0, T; D(L)),

6 € WL (0, T; Hy) N W,(0, T; D(K') N Leo(0, T; D(K)),

and the functions w, @ satisfy the conditions (54), (55) almost everywhere in the interval
[0, T'] and also satisfy the relations (56).
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REMARK 1.1. In the Definitions 1.1, 1.2 maximal smoothness of the functions w,0 is
required, which can be achieved using formulas of the corresponding Theorems 1.1, 1.2.
Integral relations (60), (61) are obtained due to a generalized approach of the generalized
solutions to the problems of mathematical physics (see, for instance, [6] ). First, the
initial differential equations (54), (55) are multiplied by the functions v(t},n(t) and
then they are integrated by parts using the initial conditions (56). It implies (among
others) that a “classical” solution to the problem (54)-(56) is its generalized solution
at the same time.

Let us check if the formally stated Cauchy problem defined by (54)(56) is the
essential generalization of thc given coupled thermoelastic problems for shallow
shells (in a case of homogeneous boundary conditions). We consider first an initial-
boundary problem for the system of differential equations (20)4(23) with the initial
conditions (33)437), with the homogeneous heat boundary conditions (38) (main
condition) or (39) (essential condition). Let £, C R* be the bounded space with
piece-wise smooth boundary of C'. A splitting of either the boundary €2; (mechanical
conditions) or £, (heat conditions) into two non-crossing parts with the main and
essential boundary conditions corresponds to each of the alternative boundary
conditions. A measure of the boundary part related to the main condition is defined
strongly positively. The main thermal condition is applied on a whole lateral shell
surface. Therefore, all mechanical boundary conditions can be applied only via the
displacements u, v, w and angles of rotation V., ¥, (the function # does not influence
these boundary conditions). We denote the space of the vector-functions w = (x,y) of
the form

w={u,v,w, 'ﬁl’y} (62)

by W3(Q))’.

All their components belong to the space W2(R2) and satisfy both main and essential
mechanical boundary eonditions of the considered problem. (W‘(Q 1))5 is the space of
vector functions (62) with all components from WJ)(£2) and satisfying main mechanical
conditions of the considered problem. Wz(Ql) is the space of functions @ € W2()
satisfying both main and essential heat boundary conditions. W2 (821) is the spaee of
the functions 8 € W1(S) satisfying the main heat condition.

The following restrictions are applied to the given functions and constants appearing

in (20}(23), (33)-(37):

heC(Q); hix,y) >0, (x,y)e Q0 (63)
o, E.ar,c;,Aq, To, T = const, k =const#0, (64)

kx,ky, = const, 0 < v=const <
Pupn g € Ly x (0,7), g2 € La(S2 x (0, T)); (65)

Wy = {10, Vo, Wo, ¥x0s ¥y0) € (WH(S1))’; (66)
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w1 = {uly V1, Wi, 'l"xl, 'l"y!] € (LZ(QI)) )

6o € La(2y).

Assuming that the following relations hold
= (L(Q))’, Hy = Ly($),
Iyw = {phu, phv, phw, 3ok, Loi* ),

&)
=—(1 8,
e To( +¢)

- - kK*E d ow
1= {6565~ (a4 5]
a ow Eh du
+ 10+ 5) |} -1 ) (G- o)
+(ky + vk,)(z—; - J,w)], W, tyﬁ#], D(L) = (W(Qu)’,
- E 9 du av
8,w= —ma{h a—ka‘l'V(@— yW):I]
E 3 du ov .
——2(1 — U)a[h(5+5;)] xeyuoey),

[Ty ] _L=v o[ (o, o0,
i [(ax+ ay)] 2 ay[”(ﬂy*ﬁx)]

szh 3w
+2(1+v) ('#I )’ (xﬁy):

Ko = —;—“vze, D(K) = W2(Qy),
0

E /2 . e :
Mo = {m,,e,m,,e, 1;‘Tv(k" +ky) fh 6dz, 7i.h, mye], D(M) = W),
S —h/2

Ear 8 (7 . Ear 8
m,B_l_va _hﬂﬂdz, m. = T jr,ﬂé?zdz (x &),
__Ear 3!1 3\’ 'gl"x a'l'y _ il 5
N = P2 2 2 ot kw+2( G+ )] 0o = @,

ﬁ’o = {UO) Yo, Wo, '#.'lﬂ, 'l"yﬂ}, i’[ = {ul’ Vi, W1, '#Ils '#yl];
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7

(78)
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1
q = {plspZJ q1, 0: 0}: q2 =T0q23 (80)

the considered initial and boundary value problem is related to that of (54)(56).

Instead of the sought functions w(f) and initial values wy,w,, the vector
function W = {u, v, w, ¥x, ¥} and the given vector functions Wy, w, defined by (79) are
sought. Note, that in our case (with an accuracy of the equivalent scalar product)
we have

DLy = (Wi (Q0)’, DK = (Wi&)'. 1)

Consider further the initial-boundary value problem is related to that of (30)(32).
With the initial conditions (33)-(35) and the homogeneous boundary conditions of
the form (41)}+{44), (38) (or (39)). Suppose that the introduced assumptions about
smoothness of the boundary £, and about splitting properties §2;, §2; corresponding
to each pair of the alternative boundary conditions are still valid. The space of
vector-function w(x, ) of the form

w = {u, v, w} (82)

with the components from W(Q;), W#() and W3(R;), which satisfy both the main
and essential mechanical boundary conditions of the considered problem is denoted
by (W2(S1))* x Wi(u). By Wi(1))* x W2(52;) we denote the space of vector-func-
tions (82) with components from WJ(Q,), W} (1), W3(§21), which satisfy the main
mechanical boundary conditions of the considered problem. The following constraints
are attached to the constants and functions occurring in (30)—(35) (in addition to (64),
(65) and (68)):

he CHQ); hx,p) >0, (x,y) e (83)

6. ON EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this clause the theorems about existence and uniqueness of general and “‘classical”
solutions to the abstract coupled problem (54)(56) are outlined, as well as the
corresponding theorems for coupled thermoelastic problems of shallow shells are
formulated. The known compact method (se¢ [7], pp. 10-11) is applied while proving
the theorem. The emphasis is focused on « priori estimation of exact and approximate
solutions of the considered problem (54)(56).

Let [1’:},—1,{711} be certain linearly independent systems of elements from D(L)
and D(K) of full values in D(LY?) and D(X'?), correspondingly; i(n), j(n) - two subseries
of the natural serics. We denote linear shells of the finite clements {1;}{2, and [n,}
by H} and HY. PG is the operator of the orthogonal projection of the Hllbert
space H(=H1 or H>) on the finite dimensional subspace G(= H7 or H3).
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The initial problem (54)-(56} will be solved with the Bubnov—Galerkin method
{(BGM):
Pr(hw, () + Lwn(8) + MO,(1)) = Prmgi(0),
Pz(D0,(1) + KO,(£) + Nwn(1)) = Pimga(),
wa(t) € Hl 6,(HeH], Vtel0,T];
wWa(0) = Won, W, = win, 6,(0) = 6op,

(95)

where {Wonpo |, {(Win)oe)s {Gon) e, are arbitrary series of the elements from HY, HY, Hj,
correspondingly, which satisfy the conditions

Won —> Wo, in D(Llfz)) Win = W, inHls 90!! - 90: inHZ' (96)

The exact solution {w,,8,} of the problem (95) is called the approximate solution
of the problem (54)(56) obtaincd by means of the BGM. Because problem (95)
is equivalent to the Cauchy problem the system of 2i(n) + j(n) creates the differential
equations with 2i(n) +j(n) unknown functions. Therefore, its solution exists and it is
unique for an arbitrary natural ».

THeOREM 1.1. If the conditions (57)(59) are satisfied, then a general solution {w,8} to
problem (54)-56) exists and is unique.

Demnrmion 1.3, The self-conjugated positively defined operators A and A, acting in
the same Hilbert space H are similar if D(A4) = D(Ag).

It is known that if the operators 4 and A are similar, then D(4'/2) = D(4,*), and
all operators AAJ‘,A"'AO,AUZA(I,/ 2,A"/2A(1,/ 2 are bounded in H together with their
increase operators.

Let Ly K be certain self-conjugated, positively defined and similar operators
forming an acute angle with the operators L and K, correspondingly; {v}, — basis
in H; composed of the eigenelements of the operator Ly, {ry}}ﬁl —basis in H,, composed
of cigenelements of the X, operator. The eigenvalues of the operators Ly and K are
denoted by A; and e;, correspondingly: Lov; = Av;, Lomy = ejmy i, j = 1,2, ...

Note, that because the operators L', K~! are fully continuous the same property
holds for the operators L5, Ky, which implies that

hi—o00, ¢—>00, (i,j— o0) 97

As the basis of the BGM method, the following series of elements are used:
{vi}Z1, {m}2,. As the initial data of the problem (95) the projection of the initial
data of (56) to the corresponding finite dimensional spaces is used:

Won = Prawo, Win = Pmw1, 6, = Puybh. (98)

More strong conditions are imposed (instead of (57) and (59)) on the given functions
£1, 22 and the elements wo, wy, 6;:

g1 € Wi, T, H), g2e W), T,H), ©9)
wo € D(L), w, € D(LY?), @ € D(K). (100)
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TaeoreM 1.2. The “classical” solution to problem (54)—(56) exists and is unique when
conditions (58), (99), (100) are satisfied.

Finally, we formulate theorems on existence and uniqueness of solutions of the
coupled thermoelastic problem of the shallow shell which follow from Theorems 1.1
and 1.2

ThxeorREM 1.3. If conditions (63)—(68) are satisfied, then the initial boundary problem for
differential equations (200+(23) with initial conditions (33)~37) and the homogeneous
boundary conditions has a single (general) solution {u,v,w, V., v, }. It fulfills the
Jollowing conditions:

{t, v, w, ¥, ¥y} € WL(0, T; Lay(21))°) N Loo(0, T; (WH(2))Y),
8 € Loo(0, T; Lo(2))° N La(0, T; (W}(Q))).

THEOREM 1.4. Let conditions (63), (64), as well as the conditions

PP, g1 € WI0,T; Lo(R1)), g2 € W3(0, T; Lo(S2)),
wo = {ty, Vo, Wo, ¥z0, ¥r0} € W2(Q1)Y,
‘;’1 = {ulsvl, Wi, \l’xlval} € WZI(QI)S: 90 € W%(QZ)

be satisfied. Then the initial-boundary problem for differential egquations (20)—(23) with
initial conditions (33)yH37) and the homogeneous boundary conditions have a single (“clas-
sical’) solution {u,v,w, ¥,, ¥, }, which satisfied the conditions

Wo = {uy, vo, wo} € (W3 (1)) x WZ(S); 84)
w1 = {ug, vi, w1} € (La(Q0))- (85)

The considered initial and boundary value problem is reduced to that defined by
(54)+56), when the following relations hold:

Hy = (Lo(S2)), Hy = Ly(S), (86)
1# = {phu, phv, phw), DO+ ;—;(1 +6)8, @7)

- 82 32w azw 32 Fw

+$[D(%;+vgzx—z)]— Eh [(k + . k)(_—kx )

+ky + vkx)(g—; - kyw)]}, D(L) = (W) x W), (38)
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KO = — % V20, D(K)= W) (89)
Ear A2 i f2 i
Mo = {me, my, [vz [ 0dz + (ks + ky) x f Gdz] } D(M) = W)
1—v b2 —h2
(90)
Nw = ]Ef’; [% +g—; —(kx + k)w + szw], D(N) = (WhQD)? x W), (91)
ﬁ’ﬂ = {UOs Vo, W0}9 ﬁ’l = {ul: Vi, wl}s (92)
1
q ={rLr.al = T - (93)
1]

The operators £,, £,, m,, my, occurring in (88), (90) are defined by relations (73), (77).
In the role of the function being sought w{#) and the initial conditions wg, w;, the vector
function w = {u, v, w} and the given vector functions wy, w; defined by (92) appear.
Note, that in the considered case, the relation holds

DY) = (W3 (@) x W(@), DK') = Wi(s). e

ReMmark 1.2. The operators L,K for the considered coupled thermoelasticproblems
can be defined as self-conjugated extensions (according to Fridrichs 9]} of the initial
differential operators given either by relations (72), (75) or (88), (89) on sets of sufficiently
smooth functions satisfying the homogeneous boundary conditions.

0, v, W, ¥re, ¥y} € WO, T; La(@n))’ N,

N L0, T; (W3 @) N Loo(0, T; (W)Y,

0 € Weo(0, T; Lo(2)) N W30, T3 W3 ()N

N Loo(0, T; WAHS)). |
TueoREM 1.5. If conditions (64), (65), (68), (83)—(85) are satisfied, then the initial
boundary problem for differential equations (30)—(32) with the attached initial (33)-(35)

and homogeneous boundary conditions has a single (general) solution {u,v,w,0}, which
satisfies the conditions:

{u, v, w} € WL(0, T; Ly(21))* N,
N Loo(0, T3 (W1 (Q2))* x W2(S2),

0 € Loo(0, T; La($2)) N L2(0, T; W3().
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THEOREM 1.6. Let conditions (64), (83), as well as the given below conditions

PLPLqL € Wa(0,T; L)), q2 € Wi(0,T; L)),
Wo = {up, vo, o} € (WHQ0) x WH(Q1),
w1 = {1, v1, w1} € (WHQP x W), 6 € WA(Q)

be satisfied. Then, the initial-boundary problem for differential equations (30)-(32)
with the initial (33)~(35) and homogeneous boundary conditions has a single (“classical”)
solution {u, v, w, 8}, which fulfills the following conditions:

tu, v, w) € W30, T; L))’ N,
NWLO,T; (W) x Wi2)n,

N Loo(0, T; (W3(Q0)Y x W3(Q0),

8e WL(0,T; Ly22)) N W0, T; Wig)n

N Loo(0, T3 W)

The obtained results follow from Theorems 1.1, 1.2 when either notation (69)(81)
(for differential equations (20)-(23) with initial conditions (33)+(37)) or notations
(86)+(94) (for differential equations (30)(32) with initial conditions (33)35)) are used.
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