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Abstract

The coupled system of three partial differential equations governing a flexible shallow shell dynamics is
analysed. No any prior assumptions about the temperature distribution through the shell thickness are
applied. The efficiency of the method used here when applied to the solution of integral-differential
equations with different dimensions (three-dimensional equations related to the Kirchhofi-Love model) and
of different type (heat transfer equations and the hyperbolic equations of shell theory) is demonstrated.
Many computational results are reported and discussed.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Although the thermoelasticity problems arise in many practical applications like aerospace and
nuclear engineering and a lot of various mathematical and numerical approaches are devoted to
analysis of constructions subjected to nonuniform high speed thermal and mechanical loads, in
majority of publications a coupling and interaction of temperature and deformation fields is not
taken into account. Fundamental monograph about coupled thermoelasticity was published by
Biot [1]. The thermal problems of theory of plates and shells have been considered in the series of
monographs [2-15]. In addition we would like to mention also the following important works
devoted to the subject of the paper: Marguerre [16], Malkin [17], Thurn [18], Williams [19,20],
Nowacki [21], Rama Rao and Johns [22], Wilde [23,24}, Zorski and Lyons [25], Kaul {26], Ryabov
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[27]. Borkowski [28,29], Marszal [30], Guryanov [31], Thein Wah [32], Durgaryan and Bakhshi-
nyan [33] and others [34-38]. Since in the reveiw work [39] already 531 references devoted to
thermoelasticity problems of plates and shells including 150 papers published only in the period of
three years 1965-1967 have been discussed, therefore we cite only a few papers closely related to
our research.

Recent publications describing current computational methods of thermoelasticity problems
are included in the monograph by Awrejcewicz and Krys’ko [40].

The presented paper summarizes experience acquired by the authors during recent scientific
research in the field of thermodynamics of plates and shells and presents generalized theory and
certain solutions to some thermoelasticity problems. More rigorous mathematical approach to
this problem can be found also in Refs. [41,42].

2. Method of solution for nonlinear coupled problems

In this paper, a shallow shell with a constant thickness 4 having a shape Q in plane and a
boundary dQ, is considered. The shell material is assumed to be isotropic and physically non-
linear. An orthogonal system of coordinates x;,x;,x3 is used. The x;,x; coordinate axes coincide
with the directions of the principal curvatures of the middle surface of the shell, and the x3 co-
ordinate is oriented towards the centre of curvature of the middle surface and is normal to the
middle surface. The displacements of the points of the middle surface along x;, x, and x; are
denoted by u; (xy,x2,1), t2(x1,x2,¢) and w(x;,x,, 1}, respectively. The initial curvatures with respect
to x1,x2 are denoted by ki, £y, respectively.

The governing equations on the basis of the kinematic Kirchhoff-Love model, can be derived
using the approach presented in [43,44]. In general, a system of three differential equations with
different dimensions: a three-dimensional heat transfer equation with coupling of deformation
and temperature, and the two dimensional equations for the shell motion can be obtained.

Then the system of the obtained differential equations can be transformed to the following
nondimensional form:
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In the above and later the following notation is used: g;(i,j = 1,2} are the tangential defor-
mations of the middle surface, and z; are its bending deformations; —A/2 < x; <h/2; K, G are
the moduli of volume compression and shear, e, is the average deformation, y(e;) is the shear
function; #e(eg) =1 is the clongation function; v is Poisson’s ratio; £ is Young’s modulus;
0(x1,%2,%3,8) = N1(x1,%2,x3,¢) — Ty is the temperature increase at the point x;,x;,x; at the time
moment ¢, and Tj(x;,x,,x3,£) is the absolute temperature at this point at time £ |6/T)| < 1 is
assumed; «, is the coefficient of linear thermal expansion;

Eh

Tii=m(£ﬁ+vsjj)+Ani—NT—ATT,
My = —Z (ot vimy) + AMy — My~ AsM, (i) = 1,2, i £ )
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theory of small elasto-plastic deformations yields Gy(e;) = (1/3)o:(e;)/e:, y(e;) = 0:(e;)/3Ge;;
V2@ = (Ty/Rr)(0/0){(ch/To) + Pe), where c is the specific heat capacity; e = &, + &, + &;; V2 is
the three-dimensional Laplace operator; § = ka,; F is Airy’s stress function;
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Note that using the introduced information a reader is able to derive the analysed set of equations
or, alternatively, more detailed description yielding the analysed equations is included in chapter 6
of the book [40].
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As the initial conditions we take

Wl:mo = @y 9|a=0 = {7,

2
w|t=0 = ‘Pla ( )
and as the boundary conditions we take

W=M11=822:9€23—9§E=0, X, = const,
axl 6x2 (3)

w=Mypy=c¢ ——a—sl]--—%-—o X3 = const

= 22—11—ax2 e 2= )

06 00 o0

—_— fd 3 —_— = O’ —_— f O‘ 4
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The boundary conditions (4) characterize a thermal shock with an intensity ¢gr on the surface
x3 = 0.5 (the other surfaces of the shell are thermally isolated). More detailed description of the
boundary conditions is given in Refs. [45-48]. We take 7 € [0,#], where 1, is the observation time
of the behaviour of the shell; Q; = (0,1) x (0, 1) is the space in which the independent variables
x1,%; vary, which is referred to as the middle surface; Q, = Q, U3Q,; 8Q, is the edge of the middle
surface; O =) x (0,5); I =080, x [0,4]; Q, = Oy x (—h/2,h/2); h is the constant shell thick-
ness; Q; = Q, U 80)y; 8Q, is the surface surrounding the shell volume in three-dimensional space;
O = x(0,4); and § =0, x (0,#). The following nondimensional parameters have been
used:

k1=klf’£, k2=k2%2, F:E%, E:s’f—:, =i,
._azz;;:az’ gT_qTa:;T’ ﬁmﬂagb, 5)
A'TU=AT’U;Tb3, AW, Amjg_;,

ToEar

b=si =m0

In (1)-(4), the bars over nondimensional expressions have been omitted.

The first equation of (1) is three-dimensional and of parabolic type, whereas the second and
third ones are two-dimensional. In addition, they are also integral-type equations. In order to
reduce the partial differential equations to ordinary differential equations with respect to time, the
finite-difference method is used to discretize the derivatives along the spatial coordinates x|, xs, x;
with an O(#?) approximation. This method results in ODEs for w and 0, and a system of algebraic
equations for the Airy function F.

The following difference operators have been used in relation to the spatial coordinates
Xy, Xx2,%3, with a mesh of uniform spacings 4y, k,, 23, respectively,
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Using the difference operators (6) and introducing a new variable dw/d¢ = w, the system of ODEs
is reduced to first-order ODEs with respect to time and to algebraic equations:

1+ v d@, d _
[1 +1o vﬁ] 2~ (1-2)p, [,1 'AFy + AAsFy ~ (AT;y + ATy — 2N7 — ZATT)U

—%(iiAlw,-j—i-lAsz):l (=0,...,m j=0,....m k=0,....,p),

(7)
dej _
de Y
dw; .
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+ ;'E‘gAzGijk + A39iﬂ(7 (8)
D(F) = E(w) + G(Nr,ArT, ATy, ATy, AThy). (9)

In (8) and (9), the following notation has been used:
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The following relation has been used in the first equation of (1) in order to describe the volume
extension e:

e=(1—20[A7°F, ., + AF,, — ATy — ATy + 2(Nr + ArT)]

1-2v _ 1+v
1 5 x:‘,(l lwxlxl + iwxzxz) +1—_—v3. (11)

This leads to (7).
In the procedure for solution of the coupled problem the time derivative in the nght-hand side
of (7) is approximated by a one-sided finite-difference relation:

dyijk
dt 12h,

3yt — 16y + 36y + 25,) + O(HY), (12)

where A, is a time interval.

We need to attach to the difference Egs. (7)-(10) a group of boundary conditions, which must
be formulated using a central finite-difference relation (it is necessary to find the values of the
fundamental functions on nodes at the edge of the shell).

A procedure for solution of the initial-boundary value problem has been constructed in the
following way.

Using the results found at the prevxous time step, wy;, Ng;, ATh15;, ArTy;, ATy, ATy, the system
of linear algebraic equations (9) is solved for Airy’s function F};. The values of F; obtained and
values of Ng;, ArT};, My, ArMy, AMyy;, AMy;, AMyy; found at the previous time step are sub-
stituted into the right-hand sides of (7) and (8). The ODEs are then integrated with respect to time
using a method which will be explained later.

Using the temperature distribution in the shell volume found above, and integrating over the
thickness with the help of Simpson’s rule,

172

0 By =
i (e1, %2, %3) ey = 6Ah

[Bo + 02 +4(01 + - - + 035 1) +2(60, + - -+ B2n-2)]; (13)
the temperature terms Ny and M7 are found. They are used in later calculations.
Then, for each point of the shell volume, the deformation intensity is calculated:

V2

€ =—

3 1/2
3 [(811 - 622)2 + (ex — 333)2 + (f—’zz - 311)2 + 56%2] . (14)
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A dependence o;(e;) is assumed (this depends on the shell material used), and o, is defined at
each point of the shell volume. The shear function y(e;) is calculated and then the nonlinear in-
tegral terms are found, which are used during the second step of the algorithm.

In the first time step, owing to the initial conditions (2) Ny = My = 0, y = 1, all nonlinear terms
are equal to zero. Use of Ny and M7 obtained in the previous step allows us to solve the integral—
differential equations (1) as a system of differential equations.

We emphasize that we need to solve the system of algebraic equations (9) for each time step, but
the matrix of this system remains constant. The Gauss method can be used to solve (9), and a
transformation to a triangular form of the matrix is performed only once during the computa-
tions, in the first step of the calculation. The choice of the Gauss method possesses many ad-
vantages with respect to both high accuracy and a relatively short computational time. For
instance, the use of a relaxation method requires computations five time longers to solve the
problem under discussion.

The use of the three-dimensional heat transfer Eq. (7) is essential, because it makes any ad-
ditional hypothesis about the temperature distribution through the thickness unnecessary.

During the integration of the ODEs (7) and (8), a very careful verification of each computa-
tional step is needed. In addition, an economical choice of the integration method used for the
ODEs (7) and (8) is important. Consideration of the approaches proposed in this paper has led the
authors to apply a combination of the explicit and implicit Adams methods, known in the lit-
erature as the Adams—Bashford or prediction—correction method.

The methods used can be represented using the following formula:

PAEC.1)"E, (15)

where P, means prediction, i.e. finding a solution using the explicit Adams method; k£ denotes the
order of accuracy; £ means to computation of the right-hand sides of the ODEs; C,,; means
correction, i.e. improvement of the accuracy using the implicit Adams method, to an accuracy of
order (k + 1) (here the solution obtained after the operation P; is used as an initial approxima-
tion); and » denotes the required number of iterations.

When the operations P,(EC,,,) have been carried out, it is recommended to compute once more
the right-hand sides of the ODEs in order to use them during the next steps of computation,

The right-hand sides of the ODEs are computed (z + 1) times, where » is independent of &; the
Runge-Kutta method of the £th order needs computation of the right-hand sides to be performed
k times.

In order to compare the accuracy and computation times of the methods, a few first-order
ODEs have been solved using the Runge-Kutta method of the fourth order, and the Adams
method in accordance with the schemes BEC.E and BECgE. Results have been obtained for some
equations with known solution, including y = ¢*sin 10x, and y = exp(2(x!!/11) — (x'2/12)). For
x € [0; 3], the following results were obtained: for &, = 0.1, the Runge-Kutta method gives more
accurate results; for &, = 0.01, the Runge—Kutta method gives a solution similar to that obtained
by the scheme PsECGE; for h, = 0.002, the Adams methods give solutions with better accuracy in
comparison with the Runge-Kutta method. Note that a solution obtained by the scheme
PBEC1E with k = 3 does not differ (practically) from that obtained with £ = 5, but a test of the
scheme with £ = 3 in comparison with the fourth order Runge—Kutta method under conditions of
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a shortage of computational resources achieved about 45% better accuracy. This was observed for
all model solutions used. ‘

On the basis of these obtained results, the scheme (15) with &k == 3 was used to integrate the
system (7)}~(9). This scheme, with one iteration, achieved 40% of the computational time of the
fourth-order Runge-Kutta method, when applied to the nonlinear coupled problem.

3. Relaxation method

Current methods applied to the solution of nonlinear problems of shells (with geometrical and
physical nonlinearities) generally use a projection onto a system of nonlinear differential or
nonlinear algebraic equations, with successive linearization using either Newton-Raphson or
other iterative methods (for instance, the relaxation method). Nowadays there exists a wide kt-
erature devoted to such methods and their algorithms.

In 1963 Fedosev [49] proposed a dynamical approach to solve a problem related to the stability
of shells. From a mathematical point of view, this method is called the “set-up’* method [50). The
main idea of this method is that the solution of the nonlinear partial differential equations is
reduced to a Cauchy problem of ODEs which is linear in time. This means that this method
linearizes the nonlinear equations and decreases their dimension.

We discuss briefly an advantage of this method here. From a mathematical point of view, the
set-up method can be treated as an iterative method to solve nonlinear algebraic equations, where
each time step provides a new approximation to the exact solution. Like all iterative methods, this
one is characterized by a high accuracy of computation. In addition, it does not have the common
disadvantage of iterative methods of a high sensitivity to the choice of the initial approximation.
Additionally, the set-up method not only gives a very simple rule for obtaining nonunique so-
lutions of static problems, but also allows one to find the stable and unstable branches of the
equilibrium position of the system under consideration and to capture all process of the jumping
behaviour of a shell.

In the process of solution of homogeneous equations via traditional methods, in order to obtain
a nontrivial solution one needs to introduce an artificial excitation (in the theory of shells this
corresponds, for instance, to a small transverse load, a small curvature or some other initial
imperfection). However, this influences (sometimes significantly) the results obtained. In the case
of the set-up method, the initial conditions play the role of the initial excitations, and small
changes of these conditions do not influence the static solution obtained. Another advantage of
the method is related to its simple realization, because nowadays there are many effective algo-
rithms and programs devoted to solution of the Cauchy problem.

Let us clarify the method for obtaining unstable solutions using an example of an arbitrary
nonlinear algebraic equation,

fx)=0. (16)

We construct two differential equations from for (16),

d’x  dx
C(‘c—lt—z--l-ﬁa) =if(x) (17)
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In order to obtain the complete set of roots of (16), we need to solve the two differential equations
(17). However, in practice we can do this in the following way.

We take an arbitrary initial condition (the initial approximation) x;, = xo for (17) with the
positive right-hand side, and solving the equation we obtain x,. Then we take the initial condition
xo = x; + ¢ and solve (17) with the negative value of the right-hand side, and so on. As an ex-
ample, we consider the solution of the equation

Fx)=x"—12 + 47 — 60x = 0. (18)

This equation has four real roots x; = 0, x; = 3, x; = 4, x4 = 5. We have solved this equation by
the set-up (SU) and Newton (N) methods. In Table 1 the roots found by both methods, the
number of iterations () needed to obtain the solution and the initial approximations are reported.
It can be seen that the SU method, in contrast to the Newton method, finds more exactly a
stable root of the Eq. (18) close to the initial approximation.
Let us consider one more (transcendental) equation:

fx})=arctanx =0. (19)

This equation has a root x = 0. It is known that for (19) the Newton method approaches this root
only for initial values such that |x] < 1.39, but the set-up method approaches this root for Vx;,.
For instance, taking x;, = 2, the root x = 0 is found after 33 iterations.

We now illustrate the high efficiency of the set-up method using a series of nonlinear problems
of the theory. of plates and shells, which are characterized by a wide range of properties with
respect to different nonlinearity types (geometrical, physical and geometrical-physical) as well as
different models (Kirchhoff-Love or Timoshenko).

We formulate now a nonlinear equation governing the dynamics of a shallow shell including
transverse shear effects, in hybrid form:

dy, w oy, Ow Pw  dw
( +ax2) Az(axﬁaxz) My il

L& &y, azy 1|, Pw 3w
3 |:1 2 a:zx + A —— 6y2 Y+ (Anxn +A1212) T At axz + (41122 +A12]2)

ViF + L(w,F) +

5,
- 24 (yx aul)) =0 (x < x),

VF 4+ viw+ 5L(w, w) = 0. (20)

Table 1
Comparison of SU and Newton methods

Exact values x =0 Xy = X = Xy =

Initial approximation (x;,) x=25 x =335 x3 =435 xs =10

SuU x =10 xx=13 x=4 X=25

N x=3 xz=5 x3 =73 Xs =25

Iteration number I{SU) 68 54 87 60

Iteration number I{(N) 7 12 9 i0
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The symbol (x; + x;) denotes that a third equilibrium equation can be obtained from the second
equation by a cyclic change of indices. The system (20) has been transformed to a nondimensional
form as earlier. The Eq. (20) include several geometrical and physical-geometrical quantities; in
particular, &, = a*/(R,,(2h)) and k,, = @*/(R,, (2h)) (geometrical parameters characterlzlng the
curvatures (1/R,, and 1/R,,) of the shell and its size (a, b,2k)), and 4, = Gi3/(4nn(b/2k)") and
2 = Gx/(d1111{a/2h)*) are the physical-geometrical parameters characterizing the effect of
transverse shear on the solution.
The following boundary conditions are attached to (20):

w:an'yﬁ:Tn=Tﬁi[‘:03

where n = x, % = y define the shell boundary; ¢ € [0, 7], where T is the observation time; Q, =
(0; 1) x (0; 1) is the space in which the independent parameters x; and x, vary, defining the middle
surface; Q; = Q; UdQ,, where 8Q, is the contour (edge) of the middle surface; Q) = Q; x (0; T);
and I' = 0Qy x [0; 1).The following initial conditions initial conditions are applied:

ow
w|t=0 = _a—t—

=0. | (21)

The problem defined by (20) and (21) is reduced to a Cauchy problem Cauchy problem using
higher approximations of the Bubnov—Galerkin method Bubnov—Galerkin method:

N
w= ZA,-j(t) sin inx; sin jmx;,

ig=1

N

F = ZB"J'(I) sin inx sin jmxy,
ij=1

N (22)

Yy = Z Cy;(1) cos imx, sin jmx;,
ij—=1

N
Vi, = ZD,-j(t) sin imx; COs jmx;.
ig=1

As a result we obtain a system of N ODEs for 4;;{¢) and a system of algebraic equations for B;;(¢),
C;(#) and Dy(r), which fortunately can be solved in closed form. The integrals over the middle
surface Q, = (0; 1) x (0; 1) were computed analytically for each of the problems considered. The
system of ODEs for A4;(¢) with the initial conditions (21) was solved using the Runge-Kutta
method with an automatic choice of the integration step. ‘
Let us analyse the influence of the damping coeflicient ¢ appearing in the first equation of the
system (20) on the value of the dynamic critical load, when an impulse load of infinitesimal du-
ration is applied (Fig. 1). We definite ¢ = ¢, as min e, when the dynamic critical load ¢ == g% is
equal to the static critical load ¢ = ¢, (i.e. ¢°, = ¢%). The criterion for a dynamic load given in [40]
is used here. Plots of g(w) and #(w) are shown in the Fig. 2 for a cylindrical shell (k. = 0, k., = 48,
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Fig. 1. Influence of damping coefficient ¢ on a dynamical critical load.
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Fig. 2. Dependences g(w), t(w) for a cylindrical shell (¥ = 5).

A1 = A = 1000). Curve 2 corresponds to ¢ = 3, whereas curve 1 corresponds to a static solution
for ¢, < ¢’,. Both parts of the figure need to be analysed simultaneously. For ¢ = ¢, and for a
given load g, the deflection approaches a constant value with increase of time. Having a set of
values {#(w;), ¢;}} one can construct a dependence ¢(w). Curves 3, 4, 5 for #(w), were obtained for
g = 255, 320 and 350, with £ = &,. From Fig. 1 it can be seen that for ¢ — ¢, ¢°, — ¢, for an
impulse load that is uniformly distributed over the shell surface and constant in time (the results
were obtained from (22) with ¥ = 5). A further increase of the number of terms in (22) does not
change the fundamental functions or their derivatives up to second order. The efficiency and high
accuracy of the Bubnov—Galerkin method when applied to both static and dynamic problems
were demonstrated Jong ago (see, for instance [51]).

In solving nonlinear problems of composite shells exhibiting weak shear stiffness within the
Timoshenko-type theory, an increase in the number of modes of equilibrium for a given load
occurs, and local stability loss is observable. The stable equilibrium configuration was chosen here
from the set of various possible configurations using the set-up method. Plots of g(w) for
ky =k, =24, A=1, A1 = 1, = 40,20, 10, 5 (corresponding to curves 1, 2, 3, 4, respectively) are
presented in Fig. 3 (obtained from (22) with N = 7). The g(w) curves were obtained using a static
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Fig. 3. Dependences ¢{w), {{w) for a cylindrical shell (¥ = 7).

method, i.e. a large set of nonlinear algebraic equations for 4;;, B;, C;; and D;; was solved using the
Newton-Raphson method for a fixed value of the deflection in the centre of the shell. The arrows
indicate external static loads which have been detected through the set-up method (the other
equilibrium configurations are not physically realized).

In practice, one can find shallow shell structures with values of &, and £, even greater than 500.
However, in the literature, only problems related to &, , ks, < 50 have been addressed. The reason
is clear. When the geometric parameters are increased, the number of possible equilibrium con-
figurations increases greatly. This requires one to increase the number of terms in the approxi-
mating functions (and nodes) used when either variational or finite-difference methods are applied
to static problems, in order to properly describe the complex surface shape. The convergence of
the solution obtained for the nonlinear algebraic equations dramatically decreases, because their
order increases.

The set-up method avoids the above disadvantages. We do not need to solve any system of
equations at all, and in particular, not a nonlinear one. There is no problem in analysing shells
with 24 <k, = k,, <500 (we have taken N =15 in (21)) The numerical results agree fully with
experiment for &, = k,, =409.1. The difference in .:f7 is 15%, and qualitatively the picture of
stability loss is the same [52].

In Fig. 4, contours of equal relative deflection w(x;,x;), 0 < x1, x2 £ 0.5, for &k, = k,, = 409.1 are
drawn. Cases a-¢ are related to the pre-critical state, whereas f corresponds to a post-critical
stability loss. With an increase of k,, and £,,, the shell loses its stability first in the corner zones,
and during “jump” behaviour, holes appear on the axial curves, which is also indicated by ex-
perimental data.

We now illustrate the high efficiency of the set-up method using an example of a physically and
geometrically nonlinear problem of a plate. We recall (1) without the temperature terms:

v w— L(W F) ViF - AWI(AMH)MXI — 2(AM12) - l(AMzz) =g 33(W + &‘W),

Xix2 X2X2

_1_._._
12(1 =

vF+vkw+§L(w,w)—A*(Azaz—mrn) +2(1 + v)(ATia),,, — A(ATy; — vAT)

X1x] I2I2

(23)
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Fig. 4. Diagrams for equal relative deflections w(x;,x,).

The construction of a solution to (23) using the set-up method has been earlier described. We
consider the geometrically and physically nonlinear problem of bending of a square plate (1 = 1).
We assume that a uniformly distributed load with intensity ¢ on the surface x; = —0.5. The
physical parameters of the plate material (AMC alloy) have been taken to be as follows: E = 69
GPa, u = 0.3, p = 2800 kglm g:{e;), and :

=Eg, e<e,

24
0; -——Eles +Exe,—e), e >e. (24)
For the shear function, we obtain

' _ U,-(e;)
y(ef) - 3Ge, ?
y=1, e<e, .

—E—‘1+ 'l—é &) e >e ' (25)
'P - E E ei L] i 53
E

5= 0.57735, e, = 0.98 x 1073

The geometrical parameters of the plate were taken to be as follows a = 5 = 0.1 m, a/h = 50. The
boundary conditions were defined by M;; = F = 0F /ox; =0, x; = const, My, /0x, + 20M1,/
Ox; = 0, x; = const and the initial conditions were w|,_, =0, w|,_, =0.

The results were compared with results obtained using the method of variational iterations and
variable elastic parameters [40]. In the set-up method, the physical nonlinearity was taken into
account through the theory of plasticity using Iliushin’s method of elastic solutions. Here we
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Table 2
Comparison of computational methods
q w(0.5;0.5)
1 2 3¢
234 0.96 0.95 1.04
60.0 2.03 2.00 1.96
70.3 2.16 223 3.24
a /
- /
320 y
/II ——— geom . nonlinear /’
256 / — geom . and physical /
i nonlinear /
/ /

192
[ / //
rd
128 .

w(0.5,0.5)
|
0 t 2.5 6 7 8 8 10

Fig. 5. Dependence g(w(0.5;0.5)).

remark that, from a mathematical point of view, the latter method corresponds to some variants
of the simple iteration method. A numerical realization of Iliushin’s method of elastic solutions
possesses many advantages in comparison with the method of variable elastic parameters. In
Table 2, the values of the deflection at the centre of the plate obtained by the method described in
[40] (column “1”’) and by the set-up method {column ““2”’) are reported, for three values of the
transverse-load parameter. Column 3 reports the difference as a percentage.

First of all, it can be concluded from Table 2 that the results obtained by these two methods are
similar. Some of the difference is caused by the specific structures of two algorithms. The static
approach relies on a reduction from partial differential equations (PDEs) to ODEs as a first
approximation and on application of the variable—elasticity method. The dynamical approach is
based on the set-up method and the method of elastic solutions.

We consider now the stability of a geometrically nonlinear elastic shell. The following pa-
rameters were chosen &, =k, =24, E=69 GPa, u=03, a=5=0.1 m, 7 =0.83 x 10~% m,
o/(e;) a defined by (24), E,/E = 0.4478, ¢, = 1.35 x 1073, The boundary conditions and initial
conditions are the same as in the previous case.

The dependence g(w(0.5;0.5)) obtained is shown in Fig. 5.

4. Numerical investigations and reliability of the results obtained

In the previous section we have shown that reliable solutions of problems of shallow-shell
theory with both geometrical and geometrical-physical nonlinearities can be obtained when the
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method described in Section 2 is applied. In this section, we show the reliability of the solution to
the three-dimensional nonstationary heat transfer equation obtained when the set-up method is
used. In addition, we also discuss and illustrate (using the technique described here) a solution to a
coupled thermoelastic problem of a flexible shallow shell without any prior assumptions about the
temperature distribution through the thickness, i.e. using the three-dimensional heat transfer
equation. As a matter of fact, we need to demonstrate the efficiency of the method when it is
applied to the solution of integral-differential equations with different dimensions (three-dimen-
sional heat transfer equations and two-dimensional equations related to the Kirchhoff-Love
model) and of different types (heat transfer equations and hyperbolic equations of shell the the-
ory).

In the equations governing the shell motion, a temperature does not appear directly, but its
integral characteristics (thermal forces and moments) are used; these appear because of the re-
duction of the three-dimensional heat transfer equation to a two-dimensional one.

The solution to the three-dimensional heat transfer equation has been sought using the finite-
difference method. A number of researchers have emphasized that neglecting the nonlinear form
of the temperature variation through the shell thickness greatly influences the solution to a
nonstationary thermoelastic problem of a shell or a plate. Therefore, a solution to the three-
dimensional nonstationary heat transfer equation without any introduction of hypotheses about
the temperature distribution through the thickness possesses important practical meaning.

Let us recall the first equation of the system (1):

oo 12629 ,0%0 %0

= hEmthgz it (26)

In this given equation, there is no term representing the shell geometry; however, the validity of
this approach has been proved [53,54]. Using the finite-difference method along the spatial co-
ordinates with an O(#*} approximation, we obtain the following ODEs with respect to time:

d
de o¢

= L M1B + A2 AsOi + AsBi + woi- (27)

We need to attach to the system (27) the initial and boundary conditions formulated earlier,
represented in a suitable (finite-difference)} form.

We consider a numerical example (second type of boundary conditions) and convective heat
transfer (third type of boundary conditions). The space was divided into (6 x 6 x 6), (8 x 8 x 8)
and (12 x 12 x 12) parts. The results obtained were compared with the analytical solution pro-
posed by Kovalenko [54], showing very good agreement.

The results of a problem related to a thermal shock on a shell surface which is thermally
isolated on its other sides are given in Table 3. The results where the surface was partitioned into
(12 x 12 x 12) and (8 x 8 x 8) parts differ from the analytical results by no more than 0.2% and
(0.5%, respectively.

We consider one of the methods of reduction of the three-dimensional problem to a two-
dimensional one. In the case of linear problems of thermoelasticity, application of the operator
method for thin-walled structures has been proposed [55], where thin-walled conditions from the
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Table 3
Comparison of results obtamed for different mesh sizes
Solution method Co-ordinates . Time _ :
. =02 - t=04 S t=0.6
Exact z=05 - 67.19 ’ 97.01 124.06
: z=_0 - 21.06 : 47.66 74.26
z=—05 8.18 _ 31.55 57.71
(12 x 12 x 12) z=05 67.04 96.92 123.97
. z=0 20.98 . 47.58 74.17
z=-0.5 8.16 31.49 57.62
Bx8x8 z=05 66.86 © 96,80 T 123.87
: ‘ z=0 -20.89 4748 74.07
z=-05 8.14 3141 . 57.53
(4xd4x4): - oz=05 65.87 o 9617 123.33
z=0_ : 20.38 46.96 73.56
z=—0.5 8.08 : 32.00 . 57.03

point of view of heat transfer theory have also been proposed Let us begin with the ﬁrst invariant
of the deformation tensor:

e =e + en + ess. (28)
The quantlty €33 can be found from the condition of a plane strain state (033 = (), and it reads
fey = ——“(011 + 0'22) + ar0. . (29)

We shall now formulate the heat transfer equations in the absence of physical nonlinearities.
Substituting 41, and o, into (29), for a physically linear body, we obtain

14v
1-

v
ey = =T 5 (611; + 322) + OCTB . _ (30)

1
Substituting (29) into.(28), we obtain the first invariant of the deformation tensor:

1-2v,

R "
e= l—v(eu +"€22)+I_v'051"9- : | o |
A-2v[1—-v, r — . I+v
_hl—v[Eh ) e .}*1—1:“’"9' (31)

Sﬁbstitutiﬁg (31) into the heat transfer equation, we obtain

_ 00 K(OZG 620 629) ; EotT’Iba

: KT a ax2 axz ax2 2V a (ell + 922 +e33) + FVO? ‘ ’ (32)
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and we introduce the following notation:

oK L wER g w
Yo T el -y 1+ oy, 12

_ (1 —2v) D= 2_12
oWl ® U Y TR

19 1—vw
Df:ﬁéht’ M =) + =, N=W(ﬂl+52)+2af‘NT:

L tog,
,..E/_é .

In operator form, the heat transfer equation reads

9%0
ot ~— + D*0 — yD}(N +x:M) = 0.

The solution to (34) obtained using the symbolic method reads

D2

0= Yo

sin JC3D al?}
D

D} D3
3
= M} +cosx D{lF?LC30 yDzN} + ) (N + zM).

x3=0

Integrating with respect to x;, we obtain

hi2 kD
NT=1/ 0dx, = 1 {9|x3_0— DN} ;D2N

R s D
12
Mr ?t? h/29x3dx3
12 siniD [ 26 D 12 n_[o6 D D?
L eV I Ip{ | Dy
~ D "D {6x3 o D } wD? %2 {6}:3 o D2 } Ve

603

(33)

(34)

(35)

(36)

(37)

Removing 6}, _, and 86/0x|,,_, from (37) and (36) and substituting into (35), we obtain the

temperature  expressed in terms of the integral characteristics:
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Ep h3D2 sinx3D
=_2 DN; M
Blx1, 32,53, 1) niD cosxs DNy + 24 siniD—2Dcot2D 4
D? (4DcoszD y D? [ £D3cotD
L2 yN-Lf1 08 2 .
T { sinkD } 301 —Tootip > (M (38)
After the boundary conditions on the surfaces
X3=:|:éi"a'g' =0 and @ =0
2 ax3 x=—0.5 a'x3 x3=—+0.5
are satisfied, the following equations are obtained:
h BD*  cotiD y D | £D3cotkD
- 2 DZN——— 2 =3 M=0 39) -
DNt g l—gDcot%DMT-l_yZ 302 1=TcotlD ! (39)
h B»D>  cotiD y D} £ p*cottD
2PN+ 1-gDcothMT+”2D2N 3D 1-fcotiD 3M=0. (40)
These equations yield an equation for the thermal stresses Ny,
and an equation for the thermal moments My,
DMy — 12M7 — yi2DIN = 0. _ - (42)

Eq. (42) has been obtained by keeping only two terms of the series of cot(k/2)D, which corre-
sponds to a cubic form of the temperature distribution (38) through the thickness.
In terms of the nondimensional parameters introduced earlier, (41) and (42) read

2 vi 2 2 2
(1 3 T (3 (12, 9)

™ Tt c \a\" @
1 + v 2?0057' aNT
= (1+'Y00€Tm) (l+1+v0ar1+v) o y (43)
oM M. w2ET, d *w Fw
-1 O°My T\ _ £l 0 (.
,1./12(/1 e ) 12MT+C(1_v)at(l ”axz)
1+ v\ OM;
= (1 +?005T-—1 — ) '5;?' (44)

We need to attach to these equations the equations governing the motion of the shell and the
continuity equation:



J. Awrejeewicz, V.A. Krysko | International Journal of Engineering Science 41 (2003) 587607 605

i b pOCl 62 1 -1 8 MT 6 MT _
1201 = )v VW = ViF = Lon F) 4= 1201 =) (’1 a2 e
&N &N,
2 25 -1 T _ V07 -
vV VF=-1 = A o 2L(w,w). (45)

As a result, we have obtained a system of four PDEs (43)(45) governing the shell motion with
coupling of both the deformation and the temperature fields. Unlike the integral-differential set of
equations usually obtained, the system above is only differential and has one dimension. Its
approximate, because in the series of cot(%/2)D only the first two terms are taken, which in
practice leads to a cubic distribution of temperature through the shell thickness. However, the
system remains a hybrid one, t.e. parabolic and hyperbolic.

We need to attach to the system (43)(45) the boundary and initial conditions. In order to solve
the system (similarly to the integral-differential system (1), we have applied a finite-difference
method with respect to the spatial coordinates with an O{A?) approximation. This finally results in
ODEs for w;;, Np;, Mp; and a system of algebraic equations for F;. The system of algebraic
equations was (again) solved using the Gauss method for every time step, and for the system of
differential equations, the Runge-Kutta method with an automatically chosen step of integration
was chosen. Unlike the situation for the set-up method, where the values of the thermal loads
occurring in the three-dimensional heat transfer equation must be taken from the previous step of
the integration in time, we do not need to take these values from the previous step now.

In order to estimate the influence of the assumption that we have made, the stress—strain state
of a shell made from AMC alloy with the boundary conditions Ti; (0w/dx;) + Tj2(Cw/0x; = 0),
x1 = const, has been analysed. .

It has been assumed also that on the surfaces x; =0, x; =0, x; =1, x; = 1, the following
boundary condition of the first type for temperature has been used: 8 =0, i.e. Nr = M7y = 0. At
the initial time instant ¢ = 0 a heat load, extending over an infinite time, uniformly distributed

Table 4

Comparison of results obtained for different methods
Time t=01 t=02 t=0.3 t=04
Method 1 2 1 2 1 2 1 2
Function
w(0.5;0.5) 0.99 0.99 1.78 1.78 0.85 0.85 0.02 0.02
w(0.25;0.25) 0.68 0.68 1.07 1.07 0.68 0.68 0.03 0.03
F(0.5;0.5) 0.38 0.38 0.63 0.63 0.33 0.33 0.00 6.00
F(0.25;0.25) 0.15 0.15 0.23 0.23 0.14 0.14 0.004 0.004
W5, (0.5;0.5) ~2.34 ~-2.34 ~12.86 -12.86 0.9¢ 0.94 -0.75 -0.74
w5, (0.25025) -8.94 -8.94 -10.52 -10.52 -9.78 -9.77 -0.36 -0.37
F,:,(0.5;0.5) -4.63 -4.63 -8.46 -8.46 -344 -3.44 -0.03 -0.02
F1,(0.25,0.25) -1.83 -1.83 -2.38 -2.38 -1.93 -1.93 -0.12 -0.12
Nr(0.5;0.5) 0.124 0.126 0.228 0.330 0.092 0.093 0.001 0.001
Mr(0.5,0.5) -0.101 -0.101 0.298 0.310 0.353 0.344 0.080 0.084
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over the shell surface, was applied, with ¢ = 81 and %, = k,, = 24. The results obtained are
presented in Table 4.

Method 1 in Table 4 corresponds to the solution of the system (43)-(45). Method 2 corresponds
to the solution of the integral-differential equations. The results obtained indicate the very high
efficiency of the approaches presented here for the solution of coupled thermoelastic problems of
flexible shells subjected to transverse impulse-type loads.

5. Conclusions

In Section 2, a method of solution for nonlinear coupled problems is addressed. The finite-
difference method is used to discretize the derivatives in order to obtain a system of ordinary
differential and algebraic equations. A procedure for solution of the initial-boundary value
problem is described. In Section 3, a relaxation method which reduces the problem to a Cauchy
problem of ordinary differential equations is presented. Some advantages and disadvantages of
the method are discussed. In addition, the high efficiency of the method is illustrated using ex-
amples of problems of plates and shells with physical and physical-geometrical nonlinearities. In
Section 4, numerical investigations are described, and the reliability of the solution of the three-
dimensional nonstationary heat transfer equation obtained using the relaxation method (later
refered to as the set-up method) is shown. In addition, a solution to a coupled thermoelastic
problem of a flexible shallow shell without any prior assumptions about the temperature distri-
bution through the thickness is given.

The use of the three-dimensional heat transfer equation is addressed. The efficiency of the
method used here when applied to the solution of integral-differential equations with different
dimensions (three-dimensional equations related to the Kirchhoff-Love model) and of different
type (heat transfer equations and the hyperbolic equations of shell theory) is demonstrated.

Since many of the detailed comments and conclusions are already included in the text, they are
not repeated now.
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