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Abstract

In this paper the algorithm for numerical integration of the ordinary differential equations
including discontinuous term describing friction is proposed. The introduced algorithm is
based on the Hénon method, which is extremely useful to locate and track the stick to stip
and slip to stick transitions. This numerical technique further referred as the ‘exact’ one is
used to investigate and to estimate a validity of various approximations to frictional
behaviour widely used in many references (the Stribeck-curve, Coulomb type and
experimental friction models).

A simple two-degrees-of-freedom mechanical system has been applied for estimation -of
validity of the different friction models as well as to take a proper value of the control
parameter £ used for smooth friction approximation by arctan function. The relative errors
have been calculated as well as the differences in the phase spaces have been tracked.

In addition, some interesting examples of stick-slip regular and chaotic dynamics
exhibited by the investigated two-degrees-of-freedom system have been illustrated and
discussed.

1. Introduction

In spite of that the investigations of mechanical systems with friction have very
long tradition, there remain still some problems which are not satisfactory solved.
On the other hand, both experimental and numerical results indicate validity of
stick-slip behaviour in many mechanical devices modelled by discrete multibody
systems (Awrejcewicz, 1996; Brand! and Pfeiffer, 1999; Van de Vrande et al.,
1999). Since the first numerical analysis of stick-slip chaotic oscillations excited
by friction has been covered out in references (Awrejcewicz and Delfs, 1990a,
1990b), they appear many other dynamics caused by friction. However, there is
observed a lack of an appropriate numerical approach to deal with stick-slip
dynamics, which corresponds to a sudden change of a system dimension. One of
the attempts to solve this problem has been proposed in reference (Van de Vrande
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et al., 1999), where the Hénon method has been applied (Hénon, 1982). Qur
research follows these references and is confirmation of the earlier works
(Awrejcewicz and Olejnik, 2001a, 2001b). -

2. Analysed system and friction

The analysed self-excited system with two-degrees-of-freedom is shown in
Fig. 1.
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Fig. 1. The considered system

Two bodies oscillate along the co-ordinates x and @ . Friction force F is
occurring between mass m and the belt that moves with a constant velocity. As
- usually, the constant stiffness coefficients are denoted by k;, i=1,2. The friction

static forces F, is defined by
F, s = Ho F N (1)

where: Fy =mg is the pressing force generated by the mass m, and u, is the
value of the static friction coefficient.
The dynamic friction force is governed by the equations

HF,
F=—pFysgnu,, =-—<sgnu,, (2)
Hoy
where v, =X-v, is the relative velocity, u< 4, . The relation between static and
dynamic coefficients is introduced in the following way:

Hy

#=m 3)
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Above, J coefficient characterizes a way of dynamic coefficient decrease, which
accompanies an increase of the relative velocity. The static forces occur when the
relative velocity is equal to zero. Therefore, one gets

IFl'{'F.\' Dl =0

(4)

F=-sgnv,, Vg 70 -

1+ 5[u,c,|

3. Approximation to the sign function

The following approximation to the sign function is applied (Awrejcewicz and
Olejnik, 2001a, 2001b)

SgnU,, = %arcmn(sure! ) 5 )

where £>0 is a large number. The estimation of the above approximation is
shown in Fig. 2, '
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Fig. 2. Influence of & for the approximation governed by equation (5)

4. Two cases of the Coulomb friction law
For a simulation the Coulomb friction law was applied.

1. The first case

In this case the friction coefficient was approximated by an exponential
Stribeck function (see Fig. 3).
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Fig. 3. Stribeck curve for the first case
ﬂ("mf) = ((l-‘o ~ Hg )e)‘ilf’[’“L lv}er IJ + 4 ]Sgn(vre[ ) (6)
Ho = Hg

where Hg s representing the coefficient of sliding friction for Vo 0, Hy is
the sticking friction coefficient, and y(v vt ) is the sliding friction coefficient.

2. The second case
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Fig. 4. Pick type of characteristics for approximation to the dynamic friction coefficient

In this case the friction coefficient was approximated by pick function (see Fig. 4)
of the form A i

Hy

1+5v,e,|

1) = 7
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The approximations in both cases are usually used in numerical investigations
(Brandl and Pfeiffer, 1999; Van de Vrande et al., 1999),

5. An error estimation during approximation to the sgn
function

In the next step we estimate errors of the approximation given in equation (5). The
curves illustrated in Fig. 5 show good convergence of the arctan approximation
when & control parameter increases. In the second case, an accuracy of this
approximation is more exact and will be shown in further considerations.
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Fig. 5. Stribeck curve approximated by arctan (= 100, 10% 10*, and ‘exact’, respectively)
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Fig 6. The second pick type of characteristics using arctan approximation (&= 10°, 10%, 10°,
and ‘exact’, respectively)
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It is easy to see approximations in both cases, when we plot the example
trajectories in the corresponding phase space. The phase portraits corresponding to
the friction force shown in Figs 5 and 6 are reported in Figs 8 and 7, respectively,
Again it is seen that £= 10" gives a good approximation to the friction.
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Fig. 7. The pick type characteristics corresponding to Figure 6 (a simple example of the
stick-slip motion)
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Fig. 8. Stribeck type of approximation corresponding to Fig. 5 (a simple example of the
stick-slip motion)
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6. Equations of motion of the analysed system
The considered model illustrated in Fig. 1 have the following equations of
motion:
mi + kix - klm = 'Ffricrion
2, 32 (7)
ﬂ‘%—)¢i+kl¢a2+k2(a~b)2¢—k,xa=0 _

The following non-dimensional differential equations govern dynamics of our two
bodies dynamical system:

] ; 1
=V V3=V, J*’4=;‘(yl‘(]+e4)J’3)
3 .

senv, LT %2¥
Ys—=W L+ 7]y,
| I-ey;
3 1 - THE SECOND CASE
Y = ;‘ (8)
] - -
: sgn (vre.t b= Fg exp[ : |tvre.r I] + /u_G Vet 0
or Ho My — g Hy
1-e,y, Ve =0
T THE FIRST CASE ’

The relations between physical values of parameters, coordinates and time, and
their non-dimensional quantities are: :

e _ma® _kz(a‘b)ﬂo
1 k L] ez - k 3 €
] 14

=mm2(a2 +bz) :kz(a—b)z F,

- , € ¥= .
3k,a’ YT ka? mk,

3

7. Exact solution by Hénon method

The first two equations of the system (Awrejcewicz and Olejnik, 2001b) can be
presented by the state equation

y=1b) ©)

where a prime denotes a differentiation with respect to 7, y=[x1,x2], and
assuming ¥, <0, fis given by
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hH= lixz,el[(pl ;x] +:'—"_;2/ﬂﬂ and f= [xz,O]. (I.G)
i ) .

rel

in the slip and stick phases, respectively. Equation (10) is integrated by the fourth-
order Runge-Kutta scheme

K, =f(y,. +”_’;__] an
k=10, +hk3)
Yin= (k +2(k2 +k )+k¢)

where h is the time step and y, represents y at r=ih. When during the slip
phase, x,>v,, the last integration step is repeated with the mverted’ slip
equation

[ o e
fmverr (xz’zl) 142 , 1 (12)
- l+e,p, I+e,@,
P~y ——— Q=X+ —
b=y 1=V,

where z, =[x,z ] and x, is the independent variable. In one step of the integration

inver!
k= f, (xZi!zli)

invert k
.f! I[le S 121]
k
k fmveﬂ[ 2‘ + l 122] : . (]3)

k, -fl""'e"(x +h1’zl: +h k3)
2641y =20 +?l(k1 +2(k2 +k3)+k4)

where: /4y =v, —x, ,, the slip-to-stick transition is found and the time integration
of equation (10) can be continued. When during the stick phase, x, sy >1, the
last integration step is repeated with the ‘inverted stick equation

(58
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f;nve”(xl,zz)zl:xi,()] .. o (]4)

2

where:
z, =[7,%,] and x, is the independent variable. In one step of integration scheme

invert
= f; (xl,i 229, )

h hk
k2 — mve”[xl,i'l'?z’zz,i'!' 221]

lnve‘ h k
ky=f, ”[xl,i'l'"iz‘szz,i +'h‘25”2"J

invert
k= f (xl,+h2,zz,+h2k)

(15)

2y a1y = (k + 2k, +h; )+ k)

where:
hy=1-x,,, the stick-to-slip transition is found and the time integratiori of
equations (11) can be continued.

8. The relative errors of the approximated solutions
The relative error e is defined by:
Zf()’h J’ﬁm) +2 ()’2 i —yzeff“)z
Z yexac! +ZI ;}.‘:J‘C!

where an “exact’ solution is derived from the Hénon exact method. The differences
between two demonstrated cases of approximation to the friction coefficient are
shown in Table 1.

(16)

Table 1. The two cases comparison of the introduced approximation

g-parameter 10° 10° 10t | 10° 10? 50 10
CASE 1- pick 0.0006 0.0231 0.1291

e type 0.0009 0.0040 0.0968 0.2065
- 0.0011 0.0133 ' 0.0430

CASE 2- S‘_"bec" 0.0005 1 0.0042 0.0337 0.7641
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& serves as the control parameter and the different periodic orbits for different £
values are shown in l? ig. 9.
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Fig. 9. The accuracy of approximations to the sgn function used in both cases

There is one interesting observation in our error investigations. Namely, with

respect 1o arctan approximation for£ =10* both of the presented models have the
same accuracy.

9. Examples of stick-slip motions
Some computational results are presented in Figs 10 and 11. A typical

projection of a trajectory associated with our system with friction is shown in
Fig. 10.
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Fig. 10. Periodic trajectories for the cases (a) and (b) for the parameters: £, = 1300,
%:=2300,7=0.001, 5~ 02,v,=2,¢,=0.11, e, = 0.06, e:=0.04, e, = 0.23, g=10*
(in (b) 1 = 0.25, 44, = 0.15, ¢ = 10): open cirlcles indicate the Poincaré map
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R

Fig. 11. Chaotic trajectory and its Poincaré map (black points) for the parameters: £, = 1000,
#=5500, h=0.002, y=0.2,v, =2, e, =0.27, e, = 0.12, &; = 0.09, e, = 0.48, £= 10"

10. Conclusions

In this report, two different numerical approaches have been proposed to solve
a classical problem with friction modelled by a mechanical system with two-
degrees-of-freedom. Since one of two bodies lies on a moving tape, its dynamics
has been tracked using the Hénon’s method, whereas the second body (pendutum)
oscillations have been followed by the standard Runge-Kutta method.

The attention has been focused on approximation of the friction term sgn by
arctan function with control parameter €. Then, an efficiency of both approaches
has been investigated. It has been observed that with an increase of &, when a
‘shape’ of arctan highly approximates friction, the more reliable is the Hénon’s
method. In spite of its relative simplicity, the computational time required to hold
the assumed accuracy is a few times lower than the standard Runge-Kutta method.
Hence, the Hénon’s method is expected to give more reliable and computationally
efficient results.

Since the authors mainly have been focused on developing the Hénon’s
procedure, only a few examples are devoted to investigate dynamics of the
analysed two-degrees-of-freedom system. It has been shown that the system can
exhibit either periodic (Fig. 10) or chaotic (Fig. 11) motion.
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