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Abstract

In this work a coupled thermo-mechanical problem of non-homogeneous shelis with
variable thickness and variable Young modulus (a so-called Timoshenko type model) is
considered. The problem is reduced to uniformly correct problem in the form of a first
order difference operator equation. In addition, a similar approach can easily be applied to
the Kirchhoff-Love model.
© 2002 Elsevier Science (USA). All rights reserved,
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1. Introduction and statement of the problem

As it is well known (see, for example [1]), the thermo-mechanical equations
governing the dynamics of the Timoshenko shell model have the form
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where u, v, w, ¥x, ¥y, 8 are known functions. The attached boundary conditions
will be defined later. The following standard notation is used: Tp—initial
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temperature; E = E(x, y) > 0—Young modulus; u—Poisson’s coefficient (0 <
i1 < 0.5); p = p(x, ¥} > 0—material density; A,—heat transfer coefficient; fi.—
specific heat capacity cotresponding to a constant deformation tensor; ¢y —linear
thermal expansion coefficient;

(i)

f(z/ h)—function describing a distribution of tangent stresses along the thickness
of a shell; A = k(x, y)—variable shell thickness; 8 = 8(x, y, z, }—shell temper-
ature increase; # = u(x, y,t), v = v(x, ¥, f), w = w{x, y, t—components of the
displacement vector of the point (x, ) in the mean surface and a deflection at
the time instant #; ¥x(x, ¥, 1), ¥y(x, y, )—rotation angles of the normal to the
mean surface in the planes xz and yz, respectively; k., ky—initial curvatures cor-
responding to the coordinates x, y; p1, p2, gi—external load intensities along the
axes x, v, 2; g2—specific heat capacity power of the sources situated within the
shell.
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2. The method

The system (1) is considered for ¢ > 0 in a three-dimensional space £2 =
21 x (—hf2,h/2), where £21 C R? is the bounded space with a piece-wise
boundary (all of the functions appearing in (1) are also assumed to be sufficiently
differentiable).

In order to reduce (1) to a difference-operator equation we introduce the
following Hilbert spaces Hyy = L3(8§21), Hyy; = L2(42), spanned by measurable
functions having integral square norm and defined in the spaces £21 and £2,
respectively. We also use the notation Hy = Hyy @ Hyy, H2 = Hyy, H3 =
Hyy ® Hyy, and Hy = Hyy;.

In addition, we introduce the following differential and matrix-ditferential
expressions (T denotes transposition):
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Analysis of the expressions K 1s fz, f3, IE; leads to the conclusion that they
are formally self-adjoint. The minimal operators generated by those operators in
the spaces H1, H2, Hs, Hy are positive well defined. We are going to attach to
the system (1) the boundary conditions in such a way that the operators K,
K3, K3, K4 generated by the expressions Kl, Kz, K3, K4 and the mentioned
boundary conditions in the spaces Hy, Hs, Hy, H; will be self- adjointed and
positive defined (observe that, for instance, Dirichlet type conditions satisfy our
requirement). N

The maximal operators generated by the expressions 521, ?12, Pos, 532, é
serve as the operators Pay, Pia, Pr3, P33, Q. The operators Poy, Po;, Q map
from Hyy @ Hy, into Hy,, whereas the operators Pz, Pio map from H, Ly info
H,y @& H,y. Note, that expressions P21 and P12, as well as Py3 and Psp are
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formally self-adjoint to each other. The expression formally self-adjoint to Q bas
the form

T
or (05 3 g},
1—w\dx 3y

By G; we denote the product operators on the spaces H; (i =1,2,3,4) with
the functions ph, ph, ph3/12, fi.(1 + &)/ T, respectively. It is obvious, that G;
are bounded and possess everywhere bounded inverse operators. In addition, we
introduce the following bounded operators from Hyy into Hy,.: the operator B;
assigns to each function f € Hy, the same function f, but considered as an
element from Hyy,, By—the product operator of the functions from Hy, with z.
It is not difficult to check that self-adjoint operators By, B3 to the operators By
and By : Hy,; — Hyy map according to the formulas:

Bfg(x,y. )= | gx,y,2)dz,

Big(x,y,2)= [ zg(x,y.2)dz, g€ Hxy:.

| |
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Let us denote

Ex
S = T T(kx+k )B1, 51 = B10s, S3=B20;.

S is regarded as the operator mapping from Hj into Hy, and S3 is regarded as
the operator mapping from Hi into Hj. Since By, B; are bounded operators,
then it follows from the results given in the monograph [2, Chapter 8, §1] that
St =01 B;. 53 = 015},

Let us denote by U, ¥ the column vectors U = (i, 0T, ¥ = (W, %,)T and
using the operators, the homogeneous system (1) can be presented in the following
form introduced earlier:

d2
G1d-—tz-U(t) + KUY+ PiaW(e) + ST@(t) =90,
2
d —w(t) + Kaw() + PulU + Pu¥ + $50(1) =
a2
d —— W) + K3 (1) + Pow + §30(1) =0,

642;6(:) + Kaf(t) — %[sl U(t) + Syw(t) + S:¥ ()] =0. @)
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Observe that for the system (2) the spaces defining the operators are linked by the
eXpressions

D(P) > D(Ky%), DR D(K{?),  D(Pw)> DK,
D(Px) D D(Ky?),  DPSH> DK (=1,2.3),

and that the system (2) represents a particular case of the more general system

d2
Edi‘— N;§,+2P,,s,—seo (=12,....n),
j~l
d6y
Fo;»——Noeo+ZPJs,+ Zs,s, 3)
j=1 j=1

with known functions § = &;(¢), 6p = 0y(r). Here F;, N; are the positive de-
fined self-adjoint operators on the Hilbert spaces H; (i =0,1,2,...,n), the F;
are bounded, the Pj; are linear and closed operators acting from H; into H;
(i,j=1,2,...,n), 8, P; are linear and closed operators from H; into Hy (i =
1,2,...,n). The defining spaces of those operators satisfy the conditions

D(P;) > D(N}?),  D(s) > DN,
DP)> DN G, j=1,2,...n).

Let H =Hi @ H2®---@® Hy, and by N, F we denote the operators generated
in H' by matrices with the dlagonals Ni, F; i=1,2,...,n), respectively (other
elements are equal to zero). By P we denote the operator generated by the
matrix (P;;)} ={(S51,...,5), Po = (Py,..., P;). Finally, denoting by S

iJj= 1’
the column of unknown functions (£1, ..., &,)T we reduce (3) to the system of
W0 equations
d’ s e
F— =—NE&+ PE— S*B,
7 £+ P
dby
Fod— = —Notly + Po + (sg) “)

We introduce the following change of variables in (4): £ = F1/%£,0 = F, 285
and we denote K = F~V/2NF~12 p = F-12PF-1/2 pp_ F—l/lNoF-l/2
Py=FVipp-12 g F‘l/zSF“I/2 The system (4) then takes the form

%

—=—-K PE — §*9,

2 £+ P&

de d

&M 4 < .

7 9+Po§-'+dt(S§'), 0<r<oo (5)

The system (5) is analyzed in the space H' @ Hp. In this system K, M are
the positive defined self-adjoint operators in the spaces H', Hy, respectively. P is
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the linear closed operator on H', and §, Py are linear closed operators from H ’
into Hp. In addition, the following relations are specified: D(P) > D(K'/?),
D(8) D D(KY2), D(Py) D D(K'/?). Observe, that the system (5) has been
considered already in reference [3] but from a different point of view. We propose
now a different approach to solve (5) than that given in [3].

In order to reduce (5) to a first order equation let us introduce in the space
H = H' ® H' & Hp the matrix operator

0 E 0
Ap= ( -K+P 0 -—-§* )
Py S —-M
(here and below E denotes the identity operator from a corresponding space). By

n we denote the column vector n = (£, &', @)T. Then the system (5) is reduced to
the following equation

n' = Agn. (6)
Let K be the operator on H, defined by the matrix

/K 0 0
K=(ogo).
0 0 E

The change ¢ = K ~1/?y transforms (6) into equation
¢'=Asg, (@
where Ay = K 1/ ZAy /2 Denote by A, A3 the operators, defined by the matrices

0 K12 ¢ 0 0 0
Ay = (—KW 0 «—S*) , Az = ( PE-VZ ¢ 0) .

0 S -M PK Y2 0 0
It is easy to check that A; = Ay + As. The conditions applied to P, Fp, lead to the
conclusion that A3 is a bounded operator. On the other hand, the properties of the
operators 5, M, K allow us to show that A» is a dissipative operator [4, Chapter i,
§4], (i.e., for all x € D{A2) Re(Aaf, f) < 0). The following lemma leads to
the conclusion, that the closure Ay of the operator Az is a maximal dissipative
operator,

Lemma. The operator As possesses everywhere defined and bounded inverse.

Proof. Observe first that the operator K ~!/2 is bounded. The equation (K ~1/2 x
S*y* = §**K—1/2 (2, Chapter 8, §4] yields the bound of (K~1/28*y* Therefore,
the operator K ~1/28* allows for a continuous extension into the whole space. In
what follows the operator-matrix

_K—I/ZS*M-ISK—I/Z _K—1/2 K—I/ZSM—I
K172 0 0
M~lsk~12 0 M1
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defines a bounded operator on H, and hence it allows for a continuous extension
into the whole space H. It can be checked directly that its product (of an arbitrary
order) with the operator-matrix defining the operator Aj, ylelds the wvnit operator
matrix. Hence the lemma is proved. O

Taking into account the maximal dissipative extension of the operator A3, the
bound of Az and the results given in reference {4, Chapter 1, §4], one obtains the
following theorem.

Theorem. The Cauchy problem for Eq. (7), where the operator A1 is replaced by
its closure, is uniformly correct.
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