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Abstract

The nonlinear problem of thermoelastic contact of a rotating shaft with a rigid bush fixed to the base
elastically (springs) is investigated using both Laplace transform and perturbation methods. A friction
coefficient is assumed to be a nonlinear function of a relative velocity. The solution to the problem is re-
duced to the system of nonlinear differential and integral equations. Zones of steady-state solution stability
and friction self-excited oscillations existence are established. The numerical analysis is carried out and
some important conclusions are given. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Friction, wear, heat generation and temperature deformation are complex processes which
influence each other and making up a sole diverse process of a friction unit work. During transient
friction process time changes of all parameters of the problem are mutually connected and
conditioned. During small sliding velocities rapid un-uniform movements can be observed very
often. These movements take place intermittently with periodical disruptions and stops. In the
considered paper we have made an attempt to investigate this mutual connection on the simplest
model that remains in conditions of such relative movements as stick-slip oscillations.

Uneven movement during friction (stick-slip motion) is the phenomenon of alternate relative
sliding and relative rest that arises due to self-oscillations during decreasing of friction coefficient
while sliding velocity increases. The main reason of mechanical oscillations arising is presence of
positive difference between friction force of rest and sliding. This difference is caused by the
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decreasing of sliding friction force with the increasing of relative velocity. Self-oscillations are
undamped oscillations supported by external energy sources in the nonlinear dissipative system.
They principally differ from other oscillatory processes in dissipative systems in that way that the
supporting periodical influence from outside is not necessary. Under wear process we will un-
derstand the process of material separation from the surface of the body that leads to gradual
change of dimensions. Wear is the result of wear process that can be measured in the length units.

To the present time the different models of nonlinear mechanical systems frictional self-oscil-
lations and the methods of their solving were considered in [1-6]. Investigation of dry friction is
presented and the approaches for the evaluation of this kind of friction are developed in [3,4,7].
Friction units wear investigation is performed and corresponding methods of wear calculation are
discussed in [7].

However, less investigated remains question concerning frictional oscillations in conditions of
heat generation and wear. Investigation of such oscillations arising conditions and behavior of
contact characteristics (contact temperature, contact pressure, wear) could be useful for the ex-
planation of different phenomena in disk brakes, grinding machines, high accuracy mechanisms
(when it is necessary to assure displacements with small velocities) and other machines with
friction couples.

The problem related to oscillations of a spring fixed on the steady base bush with respect to
uniformly rotating shaft in conditions of high friction is investigated in [6]. This problem can be
treated as the draft sketch of ordinary braking pad or Prony’s clamp. For small rotating velocity
of a shaft a stick-slip motion of a braking pad is observed. For large velocities the pad undergoes
the damped periodical oscillations. A similar behavior is also observed in many various models
which are described and illustrated in [2-5]. As it is well known a decreasing part of the kinetic
friction F¥ versus (small) velocity is responsible for an occurrence of stick-slip oscillations [8-1 1].

Thermoelastic contact of a rotating shaft with an uninertial steady bush with wear processes is
considered in works [12,13]. Observe that during shaft rotation its volume is extended due to oc-
currence of a heat process. On the other hand the process of material wear from the bush surface
occurs. All of the contact characteristics of two sliding bodies are coupled. In addition, when so-
called critical rotation velocity is achieved a surrounding medium does not keep up with heat
collection and the system is overheated (the contact characteristics increase exponentially), and
thermoelastic instability occurs. The mentioned bush wear process leads to increase of the critical
velocity, and finally, for enough high wearing, the critical velocity does not appear. Dynamical
models of thermoelastic contact in conditions of frictional heating are also presented in [14-19].

In the present work more general plane axially symmetric problem about thermoelastic contact
of the rotating shaft with the rigid bush fixed elastically to the steady base by springs in conditions
of frictional self-oscillations and wear is investigated. Observe that in our considered system a
shaft temperature, the contact pressure, wear of the bush, and the bush movement of our system
are coupled with each other. The paper is mainly focused on analysis of the mentioned self-
coupling processes.

2. Statement of the problem

Consider thermoelastic contact of solid isotropic circular shaft (cylinder) of radius R, with a
cylindrical tube-like rigid bush (solid liner, rigid ring) which is fitted to the cylinder according to
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the expression Uph(f) (Fig. 1). Calculated per unit of the length inertia moment of the bush is
equal to B,. Bush is fixed to the steady-state base through the spring with reduced coefficient of
rigidity k». Shaft rotates with angular velocity 2(¢) = Q.w(#). On the contact surface between the
cylinder and the bush friction force F; arises and as the consequence heat generation and wear U,
take place. The work of friction force is transformed into heat energy. The temperature of the
shaft at the initial instant of time is equal to 7;. Assume that between shaft and the bush Newton’s
heat exchange law takes place and that the bush has constant temperature 7.

Both thermal and stress—strain state of the shaft is considered using the cylinder co-ordinates R,
¢, Z rotating with the angular velocity € with its origin situated in the center of the rotating
elastic body. The governing equations of motion of uncoupled thermoelastic problem along Z axis
have the following form [20,21]:

2
#Vn + (1 + p) graddiva + pQ*Rer = (3) + 2p)a; grad T + p%—t-zl—l-, VT = ai %—f, (1)
1

where V2 is the Laplace operator, u = Ueg + Ve, + Wez the vector of relative displacement, T the
bush temperature, 1, g the Lamé coefficients, p the bush density, a; the coefficient of linear
thermal expansion, and «; is the thermal diffusivity.

We consider the bush as an ideal rigid body and its movement is described using the cylinder

co-ordinates R, ¢,, Z. A set of three Euler’s equations are reduced to only one which can be
presented as the following differential inclusion [4,22]:

By, + FR> € KRy, (2)

where ¢,(f) is the angle of bush deviation, F; = k»¢p,R, springs force related to the bush unit
length, F; friction force acting on the bush unit length between the bush and the shaft. F; is equal
to kinetic force F*(¥,,) if the relative velocity |¥,,| > 0, whereas for ¥, = 0 its values are located in
the interval [—F?, F], where F; denotes the maximal value of the static friction force:

, 1 ifv,>0
k W 3
E:Sgn(m{jfss("") 120 sen(k)=1{ L1} if =0, (3)
¢ wi— -1 if ¥, < 0.
I'd

Fig. 1. A model of the problem.
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We consider a one-dimensional model of thermal friction and wear during stick-slip motion

taking into account the following assumptions:

1. The external excitation of the system allows for neglecting of the term pd*u/d#? in the Lamé
equation (1). Shaft rotates with small angular velocity £(f) so that centrifugal forces pQ*R
could be neglected [23].

2. The vector components related to displacements as well as the shaft temperature do not depend
on ¢, Z, and the unequal zero components U(R, 1), V(R,t) and T(R,t) depend only on the ra-
dial co-ordinate and time.

3. We also assume that according to Coulomb’s law friction force is proportional to normal part
of reaction K, = f(¥,)N(¢), with the following friction coefficient:

if |7, > 0,

f(VW) = Sgn(VW){ﬁ:(VW) it ¥, = 0, (4)

where f; denotes maximal value of the static friction coeflicient.

4. The coeflicient of kinetic friction fi(¥,,) is dependent on the relative velocity of shaft and bush in
a way governed by equation ¥, = QR; — ¢,(¢)R; (see Fig. 2). The so-called Harsy—Stribeck’s
curve [3,5] has a minimum when V,, = F,;,, whereas for ¥, < Fy, friction coefficient decreases
fi(¥) < 0. Observe that rather various functions are taken in the literature to approximate
the experimentally found values. [t leads to different approximations of both friction force
and momentum. The most popular is that governed by simple equation f(¥,,) = Sgn(¥,)f:- A
review of various friction models can be found in [3-6]. As a criterion choice of a friction model
usually a minimal set of parameters together with a good agreement with the experiment are ta-
ken. The dependence of kinetic friction coeﬂiaent versus sliding velocity (Fig. 2) can be pre-
sented in the form

f(V) _ fm‘in+(f; frmn)exp( bl|V| lf |Vw!'~<;Vmim (5)
KT = Sin + s — Fain) €XD( b1 | Vi) + 2B0ELTn g |71 > v,
(V)

0.12 1

0.08 1

0.04 { |
|
l
AV

0 i ) In"ln i , ‘
0 0.04 (.08 VW, s

Fig. 2. Dependence of kinetic friction coefficient versus relative velocity.
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where f;, fimin, b1, b2, b3, Viin can be defined via experiment, and the function f£i(¥,) is smooth

for |V,| > 0, £ (0+) = fo, (V) Valy, oo = D3
For computation purposes, the multi-valued relation Sgn(x) is approximated by the function
Sgn, (x) defined in [4]

1 if x > &o,
Sgn, (x) = { (2 —%)% if |x] < &, (6)
-1 if x < —g,

where g = 0.0001.

5. The heat flows ¢, and ¢» are generated on the contact surface due to Ling rule [24] and governed
by the equation gq; + g2 = (1 — )V, where 5 € [0, 1] denotes the part of heat energy which
goes on the wear [14]. Both flows ¢; and ¢, go into shaft and bush, respectively:

OT(R,t
0= TRY gyt -1, 1), )
where A; is the heat conduction, and «r is the heat exchange coefficient between shaft and a
bush.
6. One of the most popular wear models is governed by the equation

U(1) = KR (0)I"P(2)", (8)

where m, n are the exponents, K is the wear coefficient of the bush, and P(s) = N(¢)/2nR, is the

contact pressure. We assume Archard’s law of wear [25,26] in the form of (8) where m =n = 1.

The taken rule is typical for an abrasive wear.

After taking into account the above assumptions our problem (from a mathematical
viewpoint) is governed by Eq. (1) which can be reduced to that of finding a solution to the
quasi-static thermoelasticity equations [20] described in the cylinder co-ordinates of the
form

FUR  10URYH 1 1 + v 8T(R,¢)

' TR ok reURI=aT TR ®)

FT(R,t) 10T(R,f) 1 BT(R,1)
dR? R dR aq & °

0<R<R, O0<t<t. (10)

The differential inclusion (2) is then approximated by the equation of bush movement as a solid
body '

Byy(t) + kB3, (1) = f(W)2RRIP(E), O <t <t (11)

The following mechanical boundary conditions are attached to Egs. (9)—(1 1)

U(0,t) =0, U(Ry,t) = -Ush(t) + ULs), O<t<t, (12)
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as well as both the heat boundary conditions

3 TR TR0 — ) = (L MR, - ()
RTRD| o o< -

and the initial conditions
TR,0)=T, 0<R<R;, ¢,(0)=05 ¢(0)=aw. (15)

A speed of bush or shaft wear is proportional to the power of friction force [25,26] in the following
manner:

U(t) = KR ()P (). (16)

Radial stress ox(R,#) in the cylinder can be determined after radial displacements U(R,¢) and
temperature T(R,?) in the cylinder as follows:

E; [1—-voU(R,1) L U(R,t)
1-2v[14+v ©R l-v R

or(R,t) = — (TR, 1) — Ty) |- (17)
In the above expressions the following definitions are used: P(t) = —oz(Ry,t), E) is the elasticity
modulus, and v is Poisson’s ratio. We find temperature, contact pressure, radial displacements, the
velocity and the magnitude of wear at the moment of time ¢ € [0,#.], where ¢, is time of contact
(0 <t <t, P(t)>0).

Integrating (9) and taking into account (12) and (17) we can write down contact pressure as
follows: :

_ 2E1C!1 1 R E}
P(t) - 1 —2V1 R? 0 [T(ést) - %]édé—'—(l *21}1)(1 +V])R]

{Uoh(t) — U).

In the above expressions the following dimensionless values are introduced:

__R ¢ v _U P, _T-Th .k

= — T =— U = —— =, =—, = s 1= y

"R g U’ o PTR T, A
Q.P.t.K.R 2(1 — nE 0 R2Q, Pt2nR* | 1, 2

kz: la Y= ( n) L1 ) &= 11 (D=%, C‘D():qaza

U A (1 —_ 2V) B,Q, Rl 2.1,

w5 1,1 ' . - )

=2 o0 =280 ) = R0~ 9), D) = heo)

where the corresponding characteristic parameters read:

f= |2 P= =% r=-
TARRY T (41 -2)R, T 21+ R
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In the dimensionless form the considered problem has the form:

(1) + o() = eF (w1 — @)p(7, @), 0 <1t <00, (18)
@(0) = ¢°, #(0) = o’ - (19)
Pl 9) = h) ~ () + [ 0 DEdE, 0<r<om, (20)
w(z) = k, / "1 — #(0)|p(e, ¢)de, 0 <1< o0, 1)
aztz(rz ) laTBa(: %) (Dagg;’ﬂ, O<t<oo, O<r<l, - - (22)
66(1 ) + Bif(1, 1:) = yF (o, — qo(*c))(wl — ¢(2))p(7, (b), 0 <1< o0, (23)

aagr) 20, 0<t<oo, 8(n0)=0, O<r<l (24)

r r—0

3. Solution of the problem

Applying the Laplace transform to nonlinear problem (20)~(24) (s — the transformation pa-
rameter)

{87,5),5(6), (). 56),86)} = [ 160191000 l2). WD), g},

where nonlinear part has the form

q(T) = 'PF((DI - (P)(wl - qb)p('r, q))a (25)

we obtain the solution in the form of Laplace transforms

B(r,s) = Go(r,5)q(s),  P(s) = k(s) + Guls)d(s),

_ Io(swr) _ Ay(s) - |
Go(r,s) = A (s)’ Guls) = d')z:l(s) , (26)
M(s) = M, 41(s) = S 43(s) + Bilo(s,), S0 = \/%

i)

Where L(x), .1.’1 (x) are the modified Bessel functions. :
Performing the inverse Laplace transformation with the help of residua’s and convolution
theorems [27] one can find the following relations:
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p(t, ) = h(z) — (t) + 70> f "Gult — OF (o1 — 9)pl&, ¢)an — ) dE, @
81 =0 / Gl T OF (01— G)pl, len — e, (28)
where

2Bi 2,um
Bi+ 2

{Gu(2), Gol(1,7)} = Z{

i : (29)

and y,, are the characteristic equation roots (m = 1,2,3,...) of the equation

Bidy(u) — ph (k) = 0. (30)

Thus, the stated problem is reduced to the solution of the system of nonlinear differential (18) and
integral (27) equations taking into account Eq. (21) for the contact pressure p(t) and the velocity
@(1). Temperature and wear could be found using expressions (28) and (21), respectively.

4. Steady-state solution analysis
4.1. Analysis of steady-state solution in case of wear absence (k, = 0)

Consider the case w:(t) = wjH(t), h{t) = H(z); H{(zr) =1, 7 > 0, H(t) = 0, 7 < 0. The steady-
state solution is found for these input data when wear is absent (in Eqgs. (18) and (22) terms
consisting time derivatives are neglected)

1 2v _&F (o))

Po=7_, V=7, PT7_, (31)
11 = &F(@))/], v=yuiF(w]}/2Bi

For the determination of the solution’s behavior the linearization of the problem was performed
in the vicinity of steady-state point (31). Assume perturbations as follows: A7) = 1 + #*(7),

o5 = of + i), <1, Jojl < 1.
Then a solution can be represented in the form
¢(r,7) = @+ ¢(1), Or,7) = 8u(r) + 8 (r7), p(7) = pau+P"(7), (32)

where |@*| < 1, |6"| < 1, |p*| < 1. The right-hand sides of Eq. (18) and the boundary condition
(23) were 11neanzed For perturbations we obtain the linear problem

() + 9™ (1) = eF (0])p"(7) +3F’(@1)Pst(m1 4 )’ 0< 1< o0, (33)



J.- Awrejcewicz, Yu. Pyryev | International Journal of Engineering Science 40 (2002) 1113-1130 1121

1
p*(r):h*(r)+f (& 1)EdE, 0 <1< 00, (35)
0
Q0 (r,1)  100°(r,t) 1 06°(r,7)
or? r o & o 0<z<oe, Bar<l, ()
o™ (1, - o - o ot o
_%.:C_)_;.B;B (1,7) —y[ SF(0))p" + pulo] — @ )(F(w,)+w1F’(m]))], 0 <1< o0,
(37)
aeé” D 0, 0<1<oo, 0 (r,0) =0, 0<r<l. (38)
v r—

Applying Laplace transformation to the linear problem (33)-(38) (s — parameter of transforma-
tion) of the form

{g*(ras),ﬁ*(s),@*(S)jﬁ*(,g)’(f)’f(s)} :/0‘ {9*910*:(0*1}‘*3&3?}3_“(1‘57

we obtain a solution in Laplace transforms

"(5) = Gon(s)R"(5) + Gy ()] (5), (39
7'(s) = Gu(s)' (5) + Gpo(s)@] (s), (40)
0*(r,s) = Ga(r, $)i*(5) + Goo(s)@}(s), (41)
where
{}

{Gwh(s)anow(s)aGph(s): (S) Geh(s) Gew(S)} A* (S)

{-} = {F(0))A1(s), pa | 7F* (@) A2(s) + F'(@}) A1 (5) ], Qa(s) A1 (s), (42)
?’-‘3(5 + 1) () (F(0}) + @i F (003) }pas o (80 )70y F (@031 (s),
velo(s)(s* + Dpe(F(0}) + wiF'(w})) }.

The characteristic equation of the steady-state problem has the form

A*(s) =0, A*(s) = A1(s)2:(s) — 2BivA1(s)(s),
Qi(s) =5 — lh s+ 1,

Q(s) = 5 + 22— 1 =5+ 1, (43)

eF" ().
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The roots s, (Res; > Res; > --- > Res,, > -, m=1,2,3,...) of the characteristic Eq. (43)
can be located in the left-hand side Res < 0 (steady solution is stable) or the right-hand side
Res > 0 (steady solution is unstable) of the complex plane depending on the input data of the
problem. The parameters of the problem for which the roots transition takes place will be called
further critical. The analysis of the parameter’s regions of steady-state solution stability is carried
out. The characteristic function is presented in the form

r6=3 (%)

m={)

= (1= )@ (dll); — 2Bivd? 2) + % (yzd“ll +2Bivyd, ) +d - 28i0d®,  (44)
5

Bi+2m 1
— B‘ 1 _ (1) = —— (2) = .
do = Bi(l ~v), d, 2m(mh? " 22 ml(1 + m)!

The dependence of critical value » versus parameter y, for different & = 0.05, 0.1, 1 is pre-
sented in Fig. 3 (curves 1-3, correspondingly). Fig. 4 contains the dependence of critical value v
versus parameter @ for different values y, = —0.05, —0.08 (curves 1 and 2). The parameter
Bi =10, y, = 0.586. For the parameters that are situated inside curves, a steady-state solution is
stable. The detailed analysis shows that decreasing of y, leads to narrowing the stability area
according to parameter v and to increasing of critical values @. When v = 0 and neglecting heat
expansion of the cylinder we obtain a model of self-oscillations [6], with the characteristic
equation of the linearized problem Q,(s) = 0. In this case a steady-state solution is stable, when
v, > 0. When @ = 0 (bush is inmovable) we obtain a model [12] with the characteristic equation
Ay{s) — 2BivA,(s) = 0. In this case, when v > 1 a steady solution is unstable (root s, > 0). The so-

Y
- 0.8
1 21131
- 0.6
- 0.4
- 0.2

03 02 01 0 01 Y
Fig, 3. Dependence of critical value of v versus critical value of y, for different values of the parameter @ (k, = 0).

Curve 1: @ = 0.005, 2: & = 0.1, 3: @ = 1. The parameter regions inside the curves correspond to the area of steady-state
solution stability.
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v 1
0.8- 2
0.6-

0.4+

0.2

0

o~

0 02 04 06 08 @

Fig. 4. Critical value of v dependence versus critical value of & for different y, (£, =0). Curve 1: v, = —0.05, 2:
v, = —0.08. Regions of steady-state solution stability are inside the corresponding curves.

called thermal instability [12] or thermal explosion [14,15] takes place. The analysis of the par-
ticular cases of the considered model shows that from one side steady-state solution is stable,
when y, > 0. This corresponds to ¥, > Vi (sec Fig. 2). From the other side a steady solution is
stable, when v < 1. The specific parameters of the system, the view of Stribeck’s curve and analysis
of the characteristic equation roots (43) can help definitely to answer the question about the
stability of steady-state solution. If steady solution (31) is unstable, then after solving a transient
problem it can behave as a stable limit cycle similar to frictional self-oscillations or it can increase
with time.

4.2. Analysis of steady-state solution in the presence of wear (k; # 0)

The steady-state solution of the problem in the case of presence of wear is found (in Egs. (18)
and (22) the terms with time derivatives and (1) = 0 are neglected)

pst = 0, Gst = 0, (pst = O1 u;t = 1- (45)

Performing similar to the previous case procedure the characteristic equation of linearized
problem is obtained in the vicinity of steady solution (45)

A*(s) =0, A'(s) =(s+ kw)d:(s) — 2BivsAs(s). (46)

The analysis of the parameter’s regions in which steady-state solution (45) is stable is carried
out. For this purpose the characteristic function is sought in the form

A*(s) = i (%)mbm, (47)

m=()

by = kd", k=rkao, by=kd"+ ca(d,ﬁ,'j, ~2Bivd(),), m=1,2,... (48)
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First, a root of the characteristical equation for small wear & < | can be presented in the form

k
1-v

(49)

Sy = —

As it can be seen from (49) for low wear when v < 1 the steady solution (45) is stable and in
opposite case — unstable. In the conditions of wear presence system’s contact time ¢, is limited. The
material of the bush will wear with time. That is why we should accurately state conditions of
stability. Parameters of the problem under which roots sy, s, of the characteristic equation have
positive real part and they are complex conjugate are related to intensive wear. Under these
parameters oscillation amplitude increases according to exponential law but system’s contact time
is limited. System will go out from the contact faster than contact characteristics will reach critical
values (initial assumptions will lose sense). Parameters of the problem under which the roots of
the characteristic equation s;, s, have only positive real part are referred as the critical param-
eters. Under these parameters there will be no oscillations but contact characteristics will rise
according to an exponential law. The system will be overheated. The rate of heat expansion is
bigger than wear rate. In Fig. 5 the dependence of critical value v (solid curves) versus parameter &
for different values of @ = 0.05, 0.1 (curves 1 and 2, respectively) is presented. Taking into ac-
count three terms in the decomposition (47) the formula for critical values is derived (roots co-
incide on real axis Res; = Res; > 0, Iins; = Ims; = 0)

k + +/2Bik(4 + Bi)
2Bid )

Ve = 1

This formula is the more accurate the less wear parameter & is. For the parameters that are sit-
uated under the solid curve v < v, the system is stable. Moreover, between solid and dashed
curves tp < v < v, time, when the system is in contact is limited and intensive wear takes place.

0 1 2 3 k

Fig. 5. Critical values v versus k for different & (k; # 0). Curves 1: @ = 0.03, 2: & = 0.1. Regions under solid curves are
stable. Parameter regions between solid and dashed curves correspond to intensive wear.
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The formula for the dashed curve is also found (roots are transiting through imaginary axis
Res; = Res; =0, Imsy = —Ims; # 0)

l+k(2+BI).

Yo = 4Bi

This formula is the more accurate the less wear parameter k is.

5. Numerical analysis of the transient solution

The numerical analysis of the problem is performed using Runge-Kutta method by taking into
account the following asymptotes:

Go(l,7) = /1/71d, G, (1) =1, 10

The following kinetic friction parameters have been fixed: f; = 0.12, fyn = 0.05, b = 140 s m™!
by =10sm™, by =2sm™!, ¥Vpin =0,035m c L.

The results of calculations for different values of the parameter y =0, 200, 400 for the steel
cylinder {ot; = 14 x 1076 °C™', 4 =21 W/(m °C™"), v = 0.3, a; == 5.9 x 1076 m%/s, E; = 19 x 10"°
Pa)andR; = 0.03m, Q = 1 rad/fs,c = 10, ® = 0.1, Bi = 10, ¢° = 0, * = 0 are shown in Figs. 6-14.
Solid curves correspond to the case of wear absence k, = 0, dashed — to the case of wear with the
dimensionless wear coefficient k, = 0.1. In this case £, = 0.25 s, P, = 1.22 x 10* Pa, y, = 0.51,
1, = —196.

In the case of heat expansion absence time evolutions of the dimensionless speed ¢(t) (curve 1),
dimensionless displacement ¢{(z) (curve 2) of the bush and dimensionless friction force
&F (w; — @)p(7) (dashed curve 3} fory = 0 (v = 0, 5; = 0.0051 the steady-state solution is unstable)
are shown in Fig. 6. '

0 10 20 T
Fig. 6. Dependence of bush movement dimensionless velocity ¢ (curve 1), dimensionless displacements ¢ (curves 2) and

dynamic friction force eF(w; — ¢) (curve 3) versus dimensionless time 7 in conditions of heat expansion absence y = 0.
Solid curves: k; =0, _dashed curves: k, = 0.1,
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Fig. 7. Phase trajectory of bush movement in conditions of heat expansion absence y = 0. Solid curves: k, = 0, dashed
curves: &, = 0.1,

. , . .
0 10 20 T
Fig. 8. Dependence of bush dimensionless velocity ¢ {curves 1), dimensionless dispiacements ¢ (curve 2) and dynamic

friction force eF(w; — ¢} (curve 3) versus dimensionless time 1, when y = 200, Solid curves: k, = 0, dashed curves:
k=0.1

Fig. 9. Phase trajectory of bush movement in conditions, when y = 200. Solid curves: &, = 0, dashed curves: &, = 0.1,
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| . .
0 10 20 T
Fig. 10. Dependence of bush dimensionless velocity ¢ (curve 1), dimensionless displacements ¢ (curve 2) and dynamic

friction force eF(e, — @) (curve 3) versus dimensionless time © when y = 400. Solid curves: k. = 0, dashed curves:
k. =0.1.

\J

20 2 46 8¢

Fig. 11. Phase trajectory of bush movement for y = 400. Solid curves: &, = 0, dashed curves: k; = 0.1.

0 10 20 T

Fig. 12. Behavior of dimensionless contact pressure p versus dimensionless time ¢ for different values of y. Curve 1:
y =40, 2: y = 200, 3: y = 400, Solid curves: k, = 0, dashed curves: &, = 0.1.
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20 3
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Wl W
0 AL NS N N
0 10 20 T

Fig. 13. Behavior of dimensionless contact temperature 8(1, 1) versus dimensionless time 1 for different values of pa-
rameter y. Curve 2: y = 200, 3: y = 400. Solid curve: k, = 0, dashed curves: k&, = 0.1.

u,

2 4

1.5 3

0 y T ‘ T i
0 10 20 T

Fig. 14. Time evolution of dimensionless wear . for different values of parameter y. Curve 1: y =0, 2: y = 200, 3:
y=400.

Fig. 7 illustrates the behavior of the phase trajectory in the phase plane without taking into
account heat expansion of the cylinder y = 0 and wear of the bush £, = 0 (solid curve) and with
wear (dashed curve). In conditions of wear absence a transient solution leads with time to stable
limit cycle with the period 6.608. Stick-slip phenomenon takes place. Let us point out that (as it
can be seen from this figure) the friction force has a jump at the instant of time when bush speed
reaches speed of the cylinder ¥, = 0. At that moment the rest {riction force changes the sign. Then
dimensionless friction force becomes equal to dimensionless displacement and this lasts to the
moment when it reaches maximal value of static friction force. From that instant of time friction
force decreases. After that it reaches local minimum when bush acceleration is equal to zero. Then
friction force increases until it reaches cylinder’s velocity ¥, = 0. Process continues cyclically. In
conditions of wear presence friction force will tend with time to zero and bush will perform its
own oscillations with the period of 2n. Time evolutions of the dimensionless speed ¢(t) {curve 1),
dimensionless displacement ¢(t) (curve 2) of the bush and dimensionless dynamic friction force
&F (w1 — @)p(t) (dashed curve 3) are shown in Fig. 8 for y = 200 (v = 0.51, s; = 0.0012 steady-
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state solution is unstable). Fig. 9 illustrates the behavior of the phase trajectory in phase plane
without taking into account a heat expansion of the cylinder y = 200 and &, = 0 (solid curve) and
with wear (dashed line). As it can be seen in conditions of bush wear absence the contact char-
acteristics tend with time to the limit cycle with the period equal to 5.5.

Fig. 10 illustrates changing with time of the dimensionless speed ¢(z) (curve 1), dimensionless
displacement ¢{t1) (curve 2) of the bush and dimensionless dynamic friction force eF (w; — @)p(1)
(dashed curve 3) for y =400 (v = 1.02, 5; = 2 x 107%). Fig. 11 illustrates the behavior of phase
trajectory on phase plane without taking into account the heat expansion of the cylinder y = 400
and &, = 0 (solid curve) and with wear (dashed curve). In the case of wear absence thermoelastic
instability takes place. System’s characteristics do not tend with time to stable limit cycle but
exponentially increase. In that case cylinder does not have enough time to become cool. Wear
presence (dashed curves) leads to thermoelastic instability disappearing.

Time changing laws for the contact pressure, temperature and wear are shown in Figs, 12-14 by
solid (dashed) curves for the case of wear absence (presence), correspondingly. Curve 1 corre-
sponds to the case of absence of heat expansion y = 0, curve 2 to y = 200, curve 3 to y = 400. In
the last case contact characteristics increase and cylinder does not have time for cooling. While
parameter @ decreases and v < 1 time necessary for leading of contact characteristics on limit
cycle increases. Wear presence leads to decreasing of contact characteristic values and to limiting
of system’s contact time (curves 2 and 3 in Fig. 12). With the increasing of the parameter y
system’s contact time decreases and, correspondingly, bush wear increases and its value becomes
bigger than value of initial deformation caused by an initial stress state of the cylinder.

6. Conclusions

New model of thermoelastic contact, in which changes of bush movement velocity, contact
pressure, friction force, contact temperature and wear are mutually connected, is considered.
Frictional self-oscillations arising conditions are investigated. In wear absence these conditions (at
the same time they are conditions of steady-state solution stability) are also conditions of linea-
tized problem characteristic equation roots transition from left-hand side (Res; < 0) to right-
hand side (Res; > 0) of Laplace transformation parameter complex plane. In conditions of wear
presence stick-slip movements disappear with time. System’s contact time is limited. The upper
bound of the solution stability conditions can be conditions of coinciding of first roots of char-
acteristical equation Ims; = Ims, = 0, Res; = Res; > 0 in the right-hand side of the complex
plane. Taking into account a heat expansion of the cylinder and wear of bush extends regions for
the parameters in which steady-state solution is stable, i.e., heat expansion and wear play role of
stabilizing factors.
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