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Abstract .
The composite dynamical equations of the structural-orthotropic cylindrical shell theory
are discussed and simplified boundary states are proposed.
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1 Introduction ‘

It is needless to say that from engineering point of view we need more accurate results
related to thin shells. It means that we need to consider the non-linear effects 2, 3, 5,
8, 10, 21, 22], The governing equations of motion are written in the form proposed by
Sanders [16] (in addition to the terms present in the original equations from reference {16]
dynamic terms are added):

Tig + 8y + Hyp/(2R) — 0.5[6(T} + T3)] — pRug =0,

S¢ + Ty — N2 — H/(2R) + (61§ + 65T3) — 0.5[0(T1 + Ta)) — pRuy =0, (1)
le + qu +15 - (61T + 925)§ — {618+ GQTQ)Q - pRuwy =0,

61 = —wg/R,0; = —(wy +v)/R, 0 = (v — q,,)/(2R).

It is worth noting that Sanders (18] defined the variant of "moderately small rotation” by
setting restrictions on the components of the linearized rotation vector, to the effect that
magnitude of these compenents can be at most of the order of magnitude of strains.
" The different variants of the non-linear shell theory are discussed in references [ 4, 6,
7,9, 13-15, 17, 18].

The stress-gtrain relations and the expressions for the transverse shear forces have the
same character as in the linear case.

The strain-displacement relations are defined as follow [16]:

£11 = ug/R + 0.5(9% + 92), €97 = (‘U,? - w)_/R + 0.5(9% + 92),
€12 = (Ve + up)/(2R) + 056102, x; = 01¢/R,
x2=02/R, x12 = (02r + 61 — 6)/(2R).

The following boundary conditions are assumed for ¢ = 0,d

v=0 or S~15RI1HF+ 0.5(Ty + )8 =0,
u=0 o T =0, . (2)
w=0 or N+ R_"Hﬂ —6T) - 88 =0,

91=0 or Ml = 0.
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The initial conditions for the vector of displacements U (u, v, w) have the form
ﬁ=ﬁo, Jﬁ=Ugu, fO’J" t=0. (3)

In the non-linear shell theory, a full classification of the simplified boundary problems
does not exist, although during solutions many particular problems of various approximate
relations have been used. oo

2 A full classification of the structural - orthotropic cylin-
- drical shells ' .

The asymptotic integration parameters e and 3 characterise longitudinal and circumferen-
tial variations. In addition, we introduce the v, d1, 82 and d3 parameters characterising the
variation in time, the non-linearity order and the magnitude of the in-plane displacements
in relation to normal displacement, of the following form

wy~efw, w~elR, u~ 2w, v~ elw.
The limiting systems obtained while applying the asymptotic procedure are given below.
All of them posses their analogy in the linear case. Thus, the stress-strain relations are
defined by the corresponding expressions for analogous linear equations.

o B<05 a=f§, =0, =0, 5=28 b=d4=F

This case corresponds to the non-linear non-momentous vibrations of a shell. The governing
equations have the following form -

T1§ + 8, - 0.5{9(T1 + Tz)},—, =0,

S¢ + Taq +0.5{8(T1 + Ta)}e + {615 + 6,12} =0,

RTy — R(/T + 923)5 — R(8:5 + 62T3)y — Psztt =, 4
11 =u§/R+0.56'%,' gae = {vy —w)/R-l-‘O.SB%, ()
£12 = 0.5R'1(u,, + 'Ug) +0.56:8:, 6= --'w,g/R,

9, = —Rlw, — {v}/R, 0= 0.5(vg ~ uy)/ .

The term taken i {...} is included only if 8 = 0. _
. ﬂ <05, a=05-+28, m=-1 +28, § =28, &=28 &3 =p.

This case corresponds to the non-linear semi-inextensional the(;rjr. The gdverning equa-
tions’ system has the following form

Tie + Sy — 0‘5{9T1}ﬂ =0, .

8¢+ Toy — {Mzﬂ./R + 0.5(9’1’1)5 + 8.5+ 8,1} =0,

Moy + BT — R{6yTy + 628~ R{615 + 8:T2)y — pRz‘wtt' =0,
en = ug/R+0.567, 0= (v, —w)/R+0.563, :

0 = 0.5R {up + vg) + 056102, 61 = —R 1wy,

32 = —R_l'w,? — {U/R}, = 0.5R_1(U€ - u,,).

(5)

In this case, the non-linear dependencies concerning shear lack and no stretching of the
middle surface of a shell are valid. The terms in the square brackets are used onlyif =10
. For 6; > 28 the equations (5) can be linearised.

Now we are going to define a boundary layer in order fo compensate a digorder in
the boundary conditions. We begin with an additive state of semi-inextensional theory
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equations. This state is characterised by a fast longitudinal variation. Its circumferential
variation and variation time should be similar to those in the interior-zone state. Further,
an arbitrary component P of the $85 (stress-strain state) can be presented in the form

P = p® L p(K), (6)

The superscript (0) and (K) correspond to the interior-zone state and the edge effects,
respectively.

The relations between the magnitude orders of the interior-zone and edge-zone states
are defined by the boundary conditions. The splitting procedure of the boundary conditions
for the non-linear case is realised in a way similar to that of the linear one. For all variants
of the boundary conditions the following estimation is valid

W) 120, 7

From the equation (7) we automatically obtain estimation of the non-linearity order of
the additive state (for the fundamental case such estimation is already given).
Substituting equation (6) in the governing equations and carrying out the asymp-
totic splitting (and taking into account the interior-zone and edge-zone states) and the
estimation (7), the following limiting system governing the edge effect is obtained:

o a=05 <05 &=05 &=1-46,

Tl(g) +859 =g, Sé’” + T8 = g, M{%‘? + BT 4 T = g,
. e§1 ) = ‘ugK)/R + ('wg ))2/(2R2) + wgo)wéK /R2,

ng) =-w& /R + w,go)ng)/Rz,

el = of +ul)/2R + (@fulf) + uPui + wPu)/2m).

(8)

In the relation (8) the varying coefficient should be "frozen”. For instance, when the edge
£ = 0 is analysed then instead of wém {or w,(,")) we have to take wéo) [e=0 (or w,(,o) l¢e=p)- Such
a frozen procedure is true, because the function w'® is changed along ¢ slower than w(®)
(19, 20]. Therefore, the coefficient of equation {8) is changing only along the co-ordinate

" The boundary effect relations for the non-momentous equations differ from the equa-
tion (8) only by the dynamical term pR2w{".
e a=f8=05 m=0, § =1 0y=4d=05.
It corresponds to the theory of shallow shells. The equations have the form
Tig+8S;=0, Se+Tpy=0, (9)
Mige + 2Hgn + Mony + BT + (wgTy + wqS)e + (weS + wyT2)y — pR2wy = 0,
e11 = ug/R+ () /QRY), ez = (v ~ w)/R+ (w)?/ (2RY), (10)

€12 = (uy + v¢)/(2R) + (wewy)/(2R?),
x1=0/R, x2=02/R, x12=/(02+061,)/(2R).

The equations (10) can be linearized for §; > 28. The first two equations of motion are
used further in the (9) form.
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The relations, describing dynamics of the supported plate, agree with the equations
(9), (10), if the underlined term is not used.

The obtained limiting systems have the second order in relation to time t, whereas
the initial system has had the order equal to six. Therefore, only a lower part of the free
vibration spectrum is represented. In order to analyse high frequency vibrations or the
nonstationary process the following limiting system should be used

. 16<1a O!"—"ﬂ, ‘51=2}8, 62=63=—16
Tlg + S‘TJ ol pR‘H-u = 0, S‘f +Tﬁn - pR‘Utt = 0, : (11)
BTy + (weTy + wyS)e + (weS + wyTa)y = pRwy = 0. (12)

The geometrical relations are linear. The equations (11) describe a motion of the structural
- orthotropic plate in its plane (u,v >> w). '

The relations (9) and the following equation govern the complementary state, neces-
sary to sa,tlsfy the boundary condltlons along the space co-ordinates

Mlgf + RT2 - pR we = 0. : i (13)
The further asymptotic analysis is ca.rned out for each class of the reinforced shells.
Stringer shells

For the stringer shells the following system describes the dynamical state with the fas
variations in circurnferential direction .

s a=0, B=05 v=-1, &=1, dg=1, d&3=05

MY 28 + M) + BT - R(e(”T“) +6§75W)e—

_ B s® 4 9(1)T(1)) oRu)) = (14)
eﬁ = W /R + () /(311322)
1 (1) 2 2
= () —w®)/R+ (w2 2F), 5

(u“’ +vi)/(2R) + w;) ”/(2&2),
x‘ﬁ’ = “’/R? XY =~ /R, K = —ul)) /R

The additive state to that governed by equations {14}, (15) is the one localised in the
neighbourhood of the shell’s edges

e a=8=05 y=-1, d&=1 {or 8 =15}, d=0=05

M(? + RT(Z) M(UT@) _
(2) - u(2 /R, (2) _ (,U(2) w(z))/R+9 1)9(2) (16)
(2’ = (v} 0 u(2)) /(2R) + 0.505"6{). |

For 8=05+k,a =k, 'y = ~1+2k,8) = 1+2k, 60 =1+k,03 =05+k k> Othebendmg
vibrations of the stringer plate play a key role.
The limiting equations have the form

Mg + 2Hey + Moy, + pR2 w3 = 0. : _ (17)
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The geometrical relations are described by the relations (15).
* For 8>1/2, a=8, y=-1428, &i=1, bh=6=1-4

the stringer type plate vibrations are described in the direction perpendicular to the sup-
porting ribs’ positions (with higher frequencies than in the previous case)

Mlgg — R(91T1 + 923)5 - R(61S + 92T2),7 “+ pszu =0,
£11 = UE/R+0.59%, £99 =‘U,,/R+0.59%,
£19 = (’U{ + u,?)/(2R) -+ 0.5919.

Ring - stiffened shells

For the shells with the dominating ring support there are states with fast variations in
both longitudinal and circumferential direction. Both of the states are dynamical states
(similar to the linear case), and a solution to the problem may begin with a calculation of
one of them. Ji depends on the needs which part of frequency spectrum is analysed. If we
begin the calculation from the consideration of the plane stress state, then we obtain the
following limiting systems °

* a=f3=025 4=0, &=1/2, &H=46=025

M) + RTY — REVTY + oM sy,

18
~R(E750 + 6'T("), - pR2u) = 0. 9
For the additive state we have
e a=05 g=02, =0, &=1, &H=1/2, & =075
M+ 12, R~ ROT el o,
ey = u? /R +0.5(6)2 + 6{V6,
@ @71 gl p@ - (19)
gy = —w" )/R+62 92 s
&3 = WP +ul)/@R) +0.56P0( + 0.5(606 + ofNe).
L] a=ﬁ=0,25, _7’}’#0, & =U.75, 6y =83 =0.25
MG + RT{Y — pR20 = 0. (20)

The geometrical relations are here linear.
The complementary state is described by the following relations

e f=025 a=05 x=0, &=1, & =05, &3 = 0.75

M3 + Ml + RT{ — RTM6( — RsW (6D 4 o)

~RT{MelY — RSM (6 + 6{) — RT{VOP — pR2u = 0,

ely = u” /R+0560)2 + 606 1 05602,

e = —w® /R + 0.5(6{)2, ,

eif = (o +uP)/(2R) + 0.56(26% + 0.5(6D6Q + 6{6) + 0,56V,

¢ B=a=025 =0, & =1 0 =4d;=0.25
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For this case the equations for the interjor-zone state overlap with the equations {20}. To
analyse the additive state the following relations are used

¢ f=025, a=05 7=0, f=1, &=05 &=075

M{z) M@) RT(2) RT(1)9(2) pR2w 2) 0,
Eg'? = ff’ JR+0 5(6(2))2 (2’ = —w®/R,
&) = P +uP)/(2R) + 0.59(2)9‘2’ +0. 59(1’9(2)

If we consider (in the beginning) a state with a dommatmg 1ongltudma1 variation then
the following limiting systems are obtained

o B=025, a=05 ~=0 &=1 &=05 0&=0T5

M{2§+M§) + BT - pRw) =0, -

& = 2)/R+6(2) /R, &2 =-uw@/R,

ey =(v (2)+u(2))/(2R)+053(2)9() | o

e B=a=025 y=0, § =075, &=025 &=025
MY + RIS — Reﬁ)rl(” — pR?ul) = 0.

The geometrical relations for this case are linearized k > 0.

o 8=02+k a=05+k =2k d&=1+2k dp=05+k d&=070-F

M1§5+M2W+PR wy =0 o
£l = UE/RI +0. 591, 622 =-w/R, e12= ‘UE/(zR) (21)

The equations (21) govern the dominating bending vlbratlons of a plate supported in the
1 direction (parallel to the ribs).

o 8505 a=p, y=-05+28, §1=1/2, &h=06=05-5
Mgy — ROT: + 8:8) — R(BLS + 0Ta) + pRP0g = 0. (22)

The limiting equation (22) go;}érns the vibrations of the structural - orthotropic plate with
higher frequency values than in the previous case. :

Waffle shells

For the waffle shells we carry oit the splitting in relation to the e parameter. We introduce
the new parameters of asymptotic integration -y, J, and also o, 84,05 and g according to
the formmulas:

a _ d 5 8 e
5§—,~557‘, — e~ ~eg™, R w~5g“ u~s§5w, v~s§“

As a result of the asymptotic splitting in relation to the equations (9), (10) we obtain the
following limiting system ’ :

o m=35 =0 =2, T
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M1§§ + 2Hpep + Moy, + RT: — -psztt =1,

£22 = (v — w)/R + wk/(2R?);.
e12 = (uy +vg) /(2R) + wew,y/ (2R?).

The equations (23) can be obta_ined from the governing system using the hypotheses

ug + (10g)2/(2R%) —eqwge =0, vy — w+ (1g)2/ (2R2) — eyt = 0. (24)

The expressions (2.17) and (2.19) describe the complementary state.

The splitting boundary conditions for the equations of non-linear semi-inextensional
theory (5) and the edge effect (8) (which can be used also in the isotropic case) are given
in the Table 1. ' '

Table 1: Variants of conditions and boundary conditions

Variants of conditions | - ‘Boundary condition for ¢ = 0,d
: Ay will =, wél) =0, 'w?) =0,
LO® = 4@ — @ 4 05R-1(wiP)2 =0

A will =, wél)': 0, L@ =y, wéz) = —-wél) ,
As w) =0, w'=0, L®=0, M7 =_uD,
Ay wl=0, V=0, [®=0 M7=_MT,
A W =0, =0, WP =0, 5P =_gWw,
Ag wW=0, TV=0, P =—ul), s@=_gm,
Ar wl =0, w’=0, §0=_50)" MP_ _yD,
As wll=0, T}"=0, 5@=-50 M@= 3D,
Ay v =0, w’=0, NP =0, wP=_uD,
A wh=0, V=0, M7=0, w@=—uD,
Ay wlh =0, w¥=0, NPT=0, MT =MD,
A wh=0, =0, NP=0, MP = _MD,
Az a =0, sW=0, NY=0, wf = _ul"
Aw V=0, sW=0, NP =0, v =-wD
Ais u) =0, $W=0, NP=0 MT=_MT,
A V=0, sMW=0, N?=0, MP - _uD

The simjlar like tables-can be constructed for the shallow stringer type shells (the
equations (14)-(16)), for the waffle shells (the equations (18)-(19)) and the ring-stiffened
shells [1]. ' ' : :

3 Example

Asan example we consider the problem of the simple supported stringer type shells vibra-
tions. Its dynamical stress-state is governed by the equations (14) -(16). The deflection w
is presented in the following way

w = f1(t)siné cos(ny) + f2(¢) sin® FRE, m = mm/d.
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The relations between the time depending functions f; and fa are ebtained using a con-
tinuity conditions of the displacement v in the ring direction. Using the Bubnov-Galerkin
method along the space co-ordinates and the standard perturbation method {11, 12] (the
amplitude of vibration has served as the perturbation parameter) the following amplitude
{¢1) - frequency (w) relation is obtained.

Q = w/fwy = [1 + 0.125(yp + 0.031250:3 (@1 — 2712 — 16c0)—
—6cran + 80c2 )@t =@ RL :

Above, wy denotes the frequency of the linear vibrations,

;o= A,;Al_l, ey = A3A2_1; ay =.¢ — 20!0,. as = 3c; — 2a,
Ay = 264 + 2e%e3e4n? 2 + eleaeqntii Tt A+ (1 egn?)?,
Ay = 0.063 + 0.5ne%es — 0.15(1 — egn?),

Ag = 0.25n%, ap = 0.094n%.

The calculations have been carried out for the following geometrical - stiffness parameters:
g1 = g5 = 0.02,e0 = 0.0004,e3 = L,e4 = &5 = 0.4,d = 4. Results are shown in the Figure
1 (" =h71o).

06

03

0 025 05 075 10 Q

Figure 1: The (2} relation.
The system’s characteristic is soft, which agrees with the knowﬁ results for the isotfopic
and reinforced shell [8].
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