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Abstract. The dimensionless partial differential equations governing the dynamics of a thin flexible isotropic
plate with an external load are derived and investigated. The period doubling bifurcations, as well as the chaotic
dynamics, are detected and analyzed. The algorithms leading to the reduction of the original equations to those of
a difference set of ordinary differential and algebraic equations are proposed, compared to other known methods,
and then applied to the problem.

Among others, it is shown that, in spite of the system complexity, the Feigenbaum scenario exhibited by
one-dimensional maps also governs the route to chaos in the continuous system under consideration.
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1. Imtroduction

From the point of view of many engineering constructions, the nonlinear behavior of their
members, such as plates and shells, is very important, and therefore has attracted the attention
off researchers for a long time. In order to exhibit the nonlinear effects governed by a plate
(or a shell), both single and multiple degrees-of-freedom approximation models have been
studied. However, the responses of weakly nonlinear multi-degrees-of-freedom maodels have
been investigated [1, 2]. A commonly used approach can be summarized as follows. The
governing partial differential equations of the analyzed continuous system are replaced by a
set of ordinary differential equations by using (in most considered cases) the Galerkin pro-
jection. Then, the obtained finite set of second-order ordinary differential equations is studied
using perturbation and asymptotic analyses [3-5]. Although the possibility exists to extend
the validity of these techniques to strongly nonlinear systems, for instance, by applying the
ideas of Pad¢ approximants [6], weakly nonlinear systems are primarily analyzed. There are
many advantages to the afore mentioned analytical approaches. The one-mode, as well as
the coupled-mode responses for both non-resonant and resonantly excited structures can be
analyzed and the exchange of energy between modes can be traced. There are many papers
devoted to nonlinear phenomena of thin as well as thick plates within the framework of the
earlier mentioned analyses {7]. However, the perturbation and asymptotic approaches also
possess some drawbacks. An initial (starting) solution to the averaging procedure does not
always guarantee a required accuracy. A construction of high-order approximations is not
always easy. It can also happen that the averaged amplitude differential equations are more
complicated than the original equations. For instance, in {5] it has been shown that, after using
the averaging procedure, the amplitudes occur in the denominators, causing serious problems
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in numerically finding solutions. A further issue concerns the number of modes needed. High-
mode approximations lead to very complicated averaging procedures and then a discussion
of the validity of the used approximation is needed. In this paper, another approach using a
difference scheme is applied. The dynamic analogue of the von Kdrmdn partial differential
equations is replaced by the second-order ordinary differential equations (ODEs) and nonlin-
ear algebraic equations. Because a number of 256 ODEs is used (finite dimension), we put
our trust in a very high approximation to the continuous system.

The stochastic behavior in deterministic systems is often realized by a framework of regular
motion bifurcations which are called bifurcation scenarios. As has been recently explained,
the process of a ‘soft’ occurrence of turbulence in continuous systems is related to the so-
called low-dimensional chaos [8—10]. This observation implies the necessity of investigating
a scenario leading to chaos in a finite-dimensioned model. The period-doubling bifurcations
of periodic orbits belongs to one of the typical mechanisms realizing transition to chaos from
the Morse—Smale systems to systems with chaotic behavior {11, 12].

2, Object of Analysis and Computational Algorithm

In this work, the dynamics of an elastic isotropic plate occupying, in the R3 space, the bounded
and measured {in the Lebesque sense) volume D with the boundary surface D is considered.
The R? space is parameterized using the Cartesian co-ordinate system OXYZ. The co-ordinate
lines are attached to the midplane of the plate, whereas the OZ axis has a normal direction
with a bottom sense. A surface attached to the given co-ordinate system has the form z = 0
and the space D = D U 8D forms a cylinder of the form

D=%x +h h Q=00
- 23 2 1 - 1

where = {x,y 0 <x =4, 0<y < b} denotes a projection to the reduced surface, 92 is

the boundary of the reduced surface, and (% /2) are the front surfaces fixed on the OZ axis.
It is assumed that the plate deformations are elastic. In addition, in our considerations, the

pressure in the plate layer parallel to the average surface (OZ = 0) is neglected. We also

assume that the normal stresses o, in the thickness direction are much smaller compared to
the stresses parallel to the reduced surface. Therefore, the following relations are valid:

E
ol = (e +ve)). o) =

z z
=2 y =12 (&5 + vey).

R W

where E is Young’s modulus, v is the Poisson coefficient, o7, a;, 72 are the stresses in an
arbitrary point of the D space with a co-ordinate z; &z, &%, and y* are correspondingly the
longitudinal and rotation deformations in a plate’s layer a distance z away from the reduced
surface 2. Using Kirchhoff’s hypotheses, the bending deformations are governed by the
relations

9w %w 8w ‘
Exu = —ZW, Eyu = —Zaz—, Vu = —2z axay. (2)
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The full deformations of an arbitrary point &, £3, y* have two components. One of them is

related to the reduced surface deformations

ou 1 aw\* ou 1 aw\*
g, = —+ -1 —], &g=—4+=1—1] .,
oax 2\ x Y7oy 2\ 8y

Ju Jdv odw Jw

= + . h 3

4 gy 0dx  0x dy )
whereas the second one is related to bending deformations of the form

Ei =€r+ Exus E; =&y + &y, Y=y + V- @

In formulae (3) u, v denote displacements of the reduced surface points in the direction of
x, y. The displacements of the plate layer in the co-ordinate axes directions are the functions
of the co-ordinates x, y and the time ¢ (the same is true for deflections w = w(x, y, t)).

It should be emphasized that deformations in the average surface due to (3) are not inde-
pendent. They are expressed by the same functions u, v, w. Differentiating the second relation
of (3) twice with respect to x, the first one with respect to y, and the third one with respect to
x, y after some transformations, one obtains the following compatibility equation

1 1
—VWViIF=—-L ,
Eh p 10w w)

() () 920 #() | () )

L{(), (")) = -2 . 5
(©. ) dx2 8y? dxdy 9xdy + 3y? ax? )

The potential (or stress function) appearing in (5) is defined by the relations

3%F 3F ’F
— =P, Ny=——Py, ny=—a .
dy? dx2 axady

N, = (6)
In (5), L and V? are non-linear and Laplace operators, respectively.
It is necessary to append to Equation (5), the equation governing a motion of the plate’s
element

c 32w+ ow Dy +82w 8°F P
—tE&—| = - w+ —|——F
at? ot ax2 | 9y?
3w 0*F w[aF
+ 5= - P @)
0xdy dxdy  3y? [ 9x?
where
En?
D= —Fouu—
121 — v?)

C [kg/mz] = ph (p = volume density);
1

g [—] = damping coefficient.
§

Equations (5) and (7) govern the motion of thin isotropic plates in a so-called hybrid form,
i.e. in relation to the deflection function w(x, y, f) and the stress function F(x, y, t).
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For the case of a stationary plate, when w = w(x, y) and F = F(x, ), formulae (5) and
(7) were derived by von Kdrmén.
Using the relations

- — a
F = EW’F, x=a% y=by, w=hw, t=tf i= =

ER® - _ER ERg - 1 . 2z
PX:FP)C, Py—?—Py, C:W , 8—&8, t()—T—w—o,

where T is the period of small free vibrations of a plate, Equations (5) and (7) are reduced to
the following (bars are omitted) dimensionless form

_284F+2 9°F N ,04F 1L( )
= —=—L(w, w),
ax* ax2ay? ay* 2

F’w Jw 1 Fw ’w 3w
Cl{ — —_—_ == )“_2 2 )\'2
( YR ) 12(1 - v2) ( 32t ey | 8y4)

%w [ 3°F 3w 8°F  *w [O*F
+ 2 (= -P ) -2 + ~p. (8)
dx2 \ 9y? axdy dxdy  ay? \ 9x?

A

The bending moments M,, M, have the form

3w 58w 8w 5 07w
MF‘(@“* a_y?)’ Mﬁ‘(a—yz*"’“ )

Equations (8) are valid for the £ space.
Listed below are some of the boundary conditions for the edges x =0, 1:

1. Free support:

3w aF
W=7 . 0 (6)]
2. Sliding support:

Jw _BF_

=—_=F 0. 10
it (10)

v ~ax

3. Ribbed support, with the non-stretched ribs in a tangential plane:

3w o*F
Y dx? (b
In order to obtain the boundary conditions along two other edges y = 0, I, one needs to
substitute x by y in relations (9-11).
We define the following initial conditions:

dw
w|.r:0=9‘91(xa )’), n. =902(x’ y)a (12)
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as well as the following difference operators:

Ar = hl—z[Y(x —he} =2V (x) + Y(x + hy)l,

32 = %[Y(x —2hy) —AY (x — hy) 4+ 6Y (x) — 4Y (x — hy) + Y(x +28,)],

1
Ary = 4hxhy[Y(x +he,y+hy)+Y(x—hy,y—hy)

— Y+ he,y—hy) +Y(x — by, y + Byl

1
Ny = VG —hey —h) =2V ~hey ) + Y&+ heyy = hy)
Xy

+Y(x—hy,y+hy)—2Y(x,y — hy) +4Y(x, y)
—2Y(x +hy, M+ Y(x, B, y+hy) —2Y(x, ¥y + hy)], (13)

where Y is represents either w(x, y) or F(x, y), respectively, whereas A, and A, correspond
to the spatial steps in the direction of x and y, respectively.

Therefore, the partial differential equation (PDE) is reduced to that of differential algebraic
equations (DAESs) for the stress function F and the deflection function w, correspondingly:

C(lﬁi,j + Efbf,j) = —{A(w) + B(w, F) — H(UJ)},
D(F) = E(w), (14)

where

1 _ 2

AW = Faos® “hxwis + Vgywy + A dwy),

B(w, F) = Mwijhy Fij 4 Awijh Fij — heywijdey Fij,
H(w) = Aywi; Py + Ay, Py,

D(F) = 12(1 —v)A(F),

E(w) = —hawirywy; + Do ywii (15)
The resulting system of second-order differential equations (ODEs) involving the variable
duwy;

reduces to ODEs of the first order in relation to time for defiections w;; and their velocities
w; ; and to the AEs for the stress function Fj;:

dw;
¢ (_dt_J + swif) = —{A(w) + B(w, F) — Hw)}, an

D(F) = E(w). | : ' (18)

In order to solve Equations (16-18) with the initial conditions {12) using one of the bound-
ary conditions (9—11) the following algorithm is applied: '
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1. The initial deflection values in each of the finite-difference mesh nodes are substituted in
the right-hand side of the AEs (18), and then the corresponding stress function Fj; field is
obtained using the Gauss method.

2. The obtained stress function values F;; are substituted into the right-hand side of the ODEs
(16) and (17), which are integrated using the Runge—Kutta method. As a result, fields of
deflections w;; are obtained in the next time step.

As has already been mentioned, the AE system is solved using the Gauss method in relation
to the stress function Fj;. A choice of that method is implied by an observation that the system
of algebraic equations is solved for each time step, but a matrix of the system is unaltered
(only the right-hand sides are changed). This is an important property because that matrix can
be reduced to a triangular form only once at the first time step. As has been pointed out in
[13], the described procedure leads to a reduction in the number of computations of at least 5
in comparison to the classical iteration method.

The ODEs are integrated using the fourth order Runge—Kutta method. A solution to the
discussed problem can be found with the largest step within the framework of a numerically
stable solution.

The necessary requirement from the point of view of computations depends on the op-
erational memory and computation speed. For instance, if the investigated space is divided
for N = n x n points, then at each time step we need to solve & times (k is the order of the
Runge—Kutta method) the system of algebraic equations with the # x # matrix. A fundamental
part of the computational time is used to solve the linear algebraic equations. However, we are
also able in this case to decrease the computational time. Assuming that during each step of
computations the stress function is only slightly changed, we need to solve Equation (16) only
once. However, some limitations still exist from a point of view of system memory. During
application of the Gauss method we need to be aware of the n x » matrix. It is especially
important when a dynamical problem is solved within the large time intervals.

3. Analysis

In order to estimate the efficiency and reliability of the proposed algorithm, the results will be
compared with those obtained using other methods.

For test purposes, we take a series of known problems. First, we calculate the first critical
loads for A = a/b = 1 for plates subjected to a constant stretching load P;(P, = 0). The
critical loads are determined using the dynamical excitation. The latter has been defined using
initial conditions of the form

W|,—g = Ay sinmx sinny,
wl—o = 0.

Then, the ODEs govermng a dynamical plates behavior with a surrounding medium damp-
ing & = g, are analyzed (¢ = g, denotes a critical damping value, for which the vibrations
vanish). On a basis of the obtained solution, one can judge the character of the acting load.

If a driven load is smaller than the critical one, then a solution to the dynamical problem
approaches a stationary state equal to zero: lim,_, o, w(f, x, y) = 0.

If aload is larger than the critical value, then a stationary solution is different from a linear
equilibrium. It should be noted that a statical solution property for a load near, below, and
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Figure 1a. Time histories related to the plate centre for different P, load values.
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Figure 1b. Continued.
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Figure Ic. Continuéd.

Table 1. Critical load wvalues ob-
tained using different computational
methods.,

No Boundary conditions

® 0 10
1 360 9.21 -

348 840 -
3 361 912 361

above the critical values does not depend on the choice of the initial conditions. The damping
coefficient ¢ helps us to reach a stationary state and does not influence the kind of statical

solution.
In Table 1, the critical load values obtained by using different methods for plates with the

afore-mentioned boundary conditions (9, 10) and (11) are presented.
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Figure 2a. Time histories, phase projections and Poincaré maps for w(0.5; 0.5) and w{0.25; 0.25) and for dif-
ferent Py load values: (a) 5.3; (b) 6.7; (c) 7.02; (d) 7.1; (e) 7.1245; ({f) 7.1288; (g) 7.129385; (h) 7.129406;

(i) 7129406, ¢ € [0.37]; (k) 7.129406, r € 10.60]; (1) 8.
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Figure 2b. Continued.

In row 1, the critical loads obtained by using the spectral methods are given [13]. In row
2 the solution obtained by using the finite difference method in combination with a method
of sequentially applied loads is given {14]. In row 3, the solutions obtained using a relaxation
method by a partition into 16 x 16 parts of the plate are used.

It is clearly seen that a solution obtained using the relaxation method fully overlaps with
that obtained using the spectral method. Besides, the boundary conditions for the stress func-
tion F do not influence the value of the critical load (st and 3rd rows of Table 1). Therefore,
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Figure 2¢. Continued.

in order to detect the first critical load of rectangular plates, a linear statement of the problem
can be used.

Stochasticity in a deterministic systems can be reatized by a bifurcation scenario.

An occurrence of a weak turbulence in a continuous systems is related to low-dimensional
chaos, which stimulated further investigations of stochastic behavior in the finite-dimensional
models [15-17]. Typical mechanisms that are responsible for the transition from the Morse—
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Figure 2d. Continued.

Smale systems to those with chaotic motion include scenarios of infinite sequence of period-
doubling bifurcations.

In the vicinity of the critical point and assuming that the contraction in each directions
is higher than the expansion (locally occurring only in one direction), a transition can be
described using a one-dimensional map.

We illustrate and analyze the transition to chaos by period-doubling the bifurcations on
the example of the squared free supported plate (boundary condition {9), A = a/b = 1). The
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Figure Ze. Continued.

longitudinat load (P,) acts along the sides x = 0, x = 1 (P, = 0), and the earlier-mentioned
initial conditions are applied.

A convergence of the computational process in time and space co-ordinates has been
examined by using the Runge principle. The time step Ar = 0.0025, as well as the space
co-ordinate step 16 x 16 is used.
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Figure 2f Continued.

Before the stationary state loses its stability, the basin of attraction becomes very smatl
and perturbations throw the state of the system from that basin even before attraction property

fully vanishes.

This behavior is related to the so-called stiff stability loss. The mechanical systems state
leaves the stationary state by jumps to a different state. The new state can be a stationary one,
characterized by a more complex behavior. The existing dynamical stability criterions applied
to plates are given in [18-20].
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Figure 2g. Continued.

4. Discussion and Conclusions

Consider a stiff stability loss of the squared plate in relation to the longitudinal load P, further
considered as a control parameter. The Hopf bifurcation sequence is analyzed.

- In Table 2, a dependence of P, for two initial exciting amplitudes (Ay = 0.001 and
A = (.3) is reported. The P, value below the marked horizontal line corresponds to the
stiff stability loss. Below, the results for Ay = 0.001 will be given.
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Figure 2h. Continued.

In Figure 1, vibrations of the plate centre deflection (w(0.5;0.5)) versus time for free
(P, = 0) and applied loads corresponding to the first, second, .. ., seventh Hopf bifurcations
are given. The corresponding load values are shown in the corresponding drawings in Figure 1.

The qualitative changes of the system states are presented in Figures 2a-21. On each fig-
ure, the time histories w(t) of the plate’s centre (one halfperiod), phase portraits w:(w), and
Poincaré mapping w4, (w) for w(0.5; 0.5) and w(0.25; 0.25) are reported.
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Figure 2i. Continued.

A convergence of a sequence of bifurcation values P,, and P, are characterized by
5 = P Xirl P X

ka+2 + ka+1 '

With an increase of &, the value of §,; does not depend on k£ and converges to the constant

d = lim §; = 4.669201 ...
k—oc
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Figure 2j. Continued.

This Feigenbaum constant describes a convergence velocity of the bifurcation parameter
P x> PI*.

The Poincaré mapping for free vibrations consists of the straight line part sloped to the
horizontal axis of 45°. The phase portrait corresponds to an ellipse. After the first period
doubling (P,; = 5.3, Figure 2a}, the Poincaré section rotates by 90°, becomes broader and
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Figure 2k, Continued.

is sloped at approximately 135° to the horizontal axis. A velocity change is observed in the

phase portrait.
For P,; = 6.7 (Figure 2b — second Hopf bifurcation)

Poincaré mapping are similar for every plate point.

0.0005 0.0010 0.0015 0.0020

in the Poincaré section, the strange

attractors occur as a result of the occurrence of weak orbits having a circle shape in the
transversal cross-section. Much higher velocities are observed. The phase portraits and the
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Figure 2I. Continued,

Looking for further values of the bifurcation parameter P, (k = 3,4, 5,6,7), it is seen
that a sequence { P, } converges to the critical point Py~ = 7.129405. Beginning from the third
Hopf bifurcation, a cross-section of the Poincaré map has an elliptic form, the larger axis of
which is sloped by 45° to the horizontal axis. After the fourth Hopf bifurcation, an orbit cross-
section possesses a complex form exhibiting a kneading phenomenon. These kneading effects
increase with the increasing number of Hopf bifurcation. A period of ‘noisy’ components
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Figure 3a. Power spectra for different Py load values.

decreases and a basin of attraction occurs, which is demonstrated on the phase portraits and the
Poincaré sections (the right-hand parts of drawings w,,,,(w;) and w(w), see Figures 2f-2h).

Similar information is also exhibited in Figure 2h for P, = 7.129405. A change of P, for
1 x 107 leads to a stiff stability loss (P« = 7.129406). The system has achieved another
state by a jump.

In this case, the time of a stiff stability loss occurrence belongs to the largest one. It means
that the stability loss occurs with a very slow change of the parameter. Even for the critical Py«
value, a dynamical stability loss plays a secondary role for ¢ < ¢, i.e. before an occurrence
of a stiff stability loss. In Figure 2j (¢ € [0, 60]), an evolution of a transitional state to a new
one is presented (in the phase portrait the prehistory of the systems motion is given). In the
time interval r € [0, 37], a closed motion trajectory, rotating around the corresponding stable
equilibrium, is observed. When a longer time interval is analyzed, ¢ € [0, 60], a transition to
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Figure 3b. Continued.

a new dynamical state is outlined, which can be followed using the Poincaré section. With an
increase of P,, the time of transition to a new dynamical state decreases (Figure 21, P, = 8)
and some of the attracting orbits die.

The frequency spectra for the mentioned Hopf bifurcations are given in Figure 3 with the
corresponding compressing impulse values P, with infinite duration in time. The Hopf bifur-
cation corresponds to two fundamental frequencies. Beginning from the fitth Hopf bifurcation
(P, = 7.1245), an amplitnde and number of periods of noisy state increase. Let us focus
on the cases of P, = 7.129405 and P, = 7.129406. A change of P, of 1 x 107° leads
to significant qualitative and quantitative changes. The broad band spectrum is presented for
P, =7.129406.

To conclude, a qualitative picture of dynamical plate behavior is sirnilar to that of its centre.
A number of Hopf bifurcations depend on the initial excitation amplitude Ay . An increase of
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Figure 3¢. Continued,

Table 2. A sequence of Hopf biforca-
tion.

Hopf Ay
bifurcation  0.001 0.3
number Py
i 5.3 5.0
2 6.7 6.3
3 7.02 6.431
4 71 6.4315
5 7.1245
6 7.129385
7 7.129385

Ap accompanies a decrease in the number of Hopf bifurcations to three (Ay = 0.3) and two
(Ag > 0.3). A chaotic attractor occurs for larger Ag.

In an analogous way, the pictures for the stress function F(x, y, ¢), the membrane stresses
N, = 3*/F/ay* N, = 3°F/0x", and the moments M., M,, can be constructed, illustrating
a similar behavior.
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Figure 3d. Continued.
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