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Abstract. New asymptotic approaches for dynamical systems containing a power nonlinear term x" are proposed
and analyzed. Two natural limiting cases are studied: n =~ 1 48,8 < | and n — oo. In the first case, the *small
& method’ (S8M) is used and its applicability for dynamical problems with the nonlinear term sina as well as
the usefulness of the SSM for the problem with small denominators are outlined. For n — o0, a new asymptotic
approach is proposed (conditionally we call it the ‘large  method’ — L8M). Error estimations lead to the following
conclusion: the L§M may be used, even for small n, whereas the SSM has a narrow application area. Both of the
discussed approaches overlap all values of the parameter n.
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1. Introduction

Choosing a perturbation parameter value during the asymptotic integration of the differen-
tial equations governing nonlinear dynamics certainly does not belong to trivial tasks. The
quasi-linear decomposition, which possesses a wide range of applications, does not allow for
achieving the desired results in many cases [1, 2]. Therefore, recently more attention has been
paid to alternative methods of perturbation parameter introduction. Particularly, in the case of
the occurrence of x"-type nonlinearity, the parameter n can be used and the analysis can be
split into two parts: n = 1 4+ 8,8 « 1 [3, 4] (‘small § method’ — SéM) and n — o0 [5, 6]
(‘large & method’ — L§M).!

In this paper, we analyze the above-mentioned approaches on the basis of some problems
of nonlinear dynamics. In particular, we show that the S6M can be reduced to the LéM.

2. Algebraic Equation — A Simple Example

In [3], an excellent choice of types of algebraic equations has been made to illustrate the
applied method. Here, we briefly describe the results given in the introduction to [3] and
compare them with an additional approach (see also [1]).

* Contributed by Professor A. F. Vakakis.
I' The last term is proposed by us.
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Consider the equation
CHx=1 (1)

A solution of Equation (1) can be found using, for instance, Newton’s method. The real root
x = (.7549. Because a perturbation parameter does not explicitly occur in (1), here we show
that there are many ways of introducing it.

2.1. QUASI-LINEAR APPROACH [3]
ex’ +x =1 (2)

Further, x is developed into a series of € and, finally, ¢ = 1 is taken. One obtains

X = i a;e', (3)
i=0

an = [(=1)"(5n)"/[n!(dn + 1)1]. @)

The convergence radius of series (3) R = 4*/5° ~ 0.082. The series is characterized by a
quick divergence. This poor result can be improved by the use of Padé approximants (AP).
The AP [3/3] for ¢ = 1 gives x = 0.7637 (the error related to the exact solution reaches
1.2%).

2.2. STRONG NONLINEAR ASYMPTOTICS [3]

> +ex=1. &)
A solution of Equation (5) can be presented by series (3), where

a, = —{I'[(4n — 1)/5])/(2T'[4 — n)/5]nD}. (6)

In this case, the radius of convergence R = 5/4*° ~ 1.65 and series (3), (5) can be summed.
Taking the first six terms into account, we obtain x = 0.07543 (the error related to the exact
solution reaches 0.07%).

2.3. THE METHOD OF SMALL § (S6M) [3]
Bender et al. [3] suggest taking the perturbation parameter in the following way:
e x=1. (7

The solution to Equation (7) is sought in the form of

r=Y b5, ®)
i=l

and, in the final form, we have to take § = 4.
The introduction of series (8) into Equation (7) allows us to obtain the coefficients b;:

by=05 b =025In2; by=-0.125In2...
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and the radius of convergence of the series (8) is R = 1. An application of AP [3/3] allows
one to find x = 0.07545 (the error is 0.05%).

2.4. THE METHOD OF LARGE é (L6M)

An asymptotic mathematician says [3]: if for ¢ — 0 an asymptotic behavior occurs, then for
£ — 0o an asymptotic process should also be evident. We try to find a solution to Equation (1)
for n — 00. We change the variables according to the rule x = y!/" and we use the following
approximation:

1
/=14 —lny+-oe.

In the first approximation we get
x(n)=1—Inn/n,

which leads to the value x = 0.6781 (the error is 10.6%). The application of the AP gives
x(n) = 1/(1 +1Inn/n), x(5) = 0.7564 (the error is only 0.2%!).
An occurrence of the series term

Inn — ln(lnn))”'l
n

x(n) = (

allows one to improve the result x(5) = 0.07558. The error related to the required solution is
0.1%.

The above elementary considerations lead to the following conclusions. The introduction
of a small (large) parameter into the series exponent can lead to more effective results than the
traditional methods of a weak or strong link (coupling). For the considered example, the LM
is more effective than the S§M.

Finally, applying the S6M leads to the occurrence (in a solution) of the ‘In’-type singular-
ities. Besides, in the case of the LM, the bifurcation points occur because of the roots of n
powers.

3. The Small § Method for Homogeneous Nonlinear Dynamical Equations

We consider the homogeneous nonlinear differential equation

X+x"=0, )]
and we are going to find a periodic solution with the following initial conditions

x( =1, x(0)=0. (10)
Using the SéM, Equation (9) is transformed into

X+ x1t® =0 11)

Taking into account the series

2
(ff=1+amu%+%ﬂmﬁn%w~, , (12)
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a solution to Equation (11) is sought in the form

x = ix,,&”. | (13)
n=0

Besides, we introduce a standard change of time following the formula
=1/w, (14)
and the introduced parameter w is defined by
=1+t +o?t -, (15)

Substituting expressions (13—15) into Equation (11) and taking into account (12) (after split-
ting with respect to §), we get the following recurrent system of equations

Xo =xp =0, (16)
x0) =1, x(0) =0, (17)
X1+ x = —xoIn(xp)? — a1 X, (18)
X (d) = 1,(0) = 0, (19)
X2+ x3 = —[x) In(x?) + 2x,] — xo[In(x)]* — arip — a1 5y, (20)
x2(0) = %,(0) = 0. (21)

From Equations (16, 17), one obtains
Xp = COS .
Then from Equation (18) we get
¥ + x; = —cosIn(cos?® t) + oy cos t. 22)

The most popular method of constructing the solution to Equation (22) is related to the
development of the Fourier series of the first term of the right-hand side equations in order to
cancel the resonance behavior by a proper choice of . The averaging procedure applied to
the right-hand side of Equation (22) is related to the so-called Lobatczevski function

X

Lix) = —jlnlcostl dz,

0

which has the following properties:
1. Symmetry and periodicity

L(x)=—L(—x) for — ~’25 <x<

|
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2. Pseudoperiodicity
Lx—m)=Lx)—mIn2, Lx+n)=Lx)4+mIn2,

3. Series approximation

sin 2k,

l o _
L) =xn2-53 (- —3

k=1
Taking into account the two first properties, one obtains:

LQr) =27In2, andthus o =47 1n2.
Therefore, a period of the solution can be defined as

T ~2n[1—28In2]. (23)

Forn = 3(6 = 1), formula (23) yields T = 6.8070, where the exact period value T = 7.4164
(the error does not exceed 8%). The next approximation gives an almost exact value (T =
7.5111). The approximation formula (23) does not represent a real period value for n = 5.

4. Mathematical Pendulum

The.SéM allows for some rather simple investigations of many problems for which an applic-
ation of the quasi-linear approach is difficult.
As an example, we consider the mathematical pendulum governed by the equation

¥ +sinx =0. (24)
The quasi-linear approach does not guarantee the required accuracy of the solution to boundary-
value problem (24).

Equation (24) can be transformed into the form

1 1
£+x_§xl+26+§xl+45+___=0’ (25)

which can be solved using the S6M with the boundary conditions of (10).
Let us consider the expression

_ 1 05, 1 1+45
Q(x,&)—x—ﬁx +§x 000~

which reads as

1 1 )
Q(x,0)=x(1—§+§—---)=xsml.

Defining w? = sin 1, we apply the series (12) to each of the term of the function Q(x, 8).
Therefore,

Q(x,8) = x(@* + 8 In(x>)w? + 8 [In(x?)]* + - -],
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where
1 2 3 4
SO TR I TR TR
1 22 32 4
2— — — — — — — - s »
""2_0'5(3! st~ ot )

After splitting with respect to 3, we get the following recurrent equations:

Xo + 0’xg =0, (26)
x0(0) =1, ip(0) =0, (27
X1 + @’x; = wixp In(xg)? — ety Xo, (28)
x1(0) = x,(0) =0, (29)
¥y + w’xy = wfx; ln(xg) + a)g.\:o[ln(,wrg“;)]2 — 02Xy — a1 X1, (30)
x2(0) = #,(0) = 0. (31)

The zero order solution (initial-value problem (26), (27)) has the form
Xo = COsS wt.

From the first approximation equation (28), using a method for avoiding the secular terms,
we get

o) = —2(w; /w)?In 2.

‘Taking 8 = 1, we get the formula for the period of oscillations
In2
T =2 {1 — (o) /w)zn?] . (32)

The next successive approximations can be obtained in a similar way.

The numerical computation of the period of Equation (24) gives the value T = 6.6.
Approximation of zero order gives 7 = 6.8 and this approximation is better than usually
using approximation of the order T = 2. In the first approximation, one obtains an almost
exact value T = 6.57 (error consists approximately of 0.5%). '

Therefore, the SSM can be treated as an adequate one for the approximate integration of
equations which do not explicitly include small parameters.

5. Large § Method (L3M)

Consider a construction of the periodic solution to the equation

X+x" =0, (33)
with the boundary conditions

x(0) =0, . (34)
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for x = 1 one has x = 0. (35)

Integration of Equation (33) yields

. 1/(n+1) 0<é=
36
(n + 1) [ 1 — gn+1 (36)
0

A change of variables & = sin® @, & = 2/(n + 1) applied to expression (36) gives

0<O=<m/2
e =g f sin~! 7 @ dO. (37)

In order to obtain the first approximation of the right-hand side asymptotics of (37), the
following relations are used:

1—
sin~!t* 9 = g~!t¢ —9— ) = g1te _9.._ eln _._8,,.., 4.
sin 6 sin @ sin @

1+¢

0
sin~!*¢ 9 = 9—”5—3’— + -4 O(e).

Coming back to the initial variables, we finally get
x & g% sin (1° 697). (38)

Solution (38) is valid in the interval of 0.25T, and then it can be periodically extended. For
period T, we get

’ - (2/n+1)
T(n) =4 (L-u-”’"H) . (39)

232

If we develop expression (38) with respect to ¢, then in the first approximation we get the
solution obtained by Pilipchuk [5, 6]. Formula (39) for n = 1 (a linear problem) gives the
exact value of 2rr; for n — oo we have T'(n) — 4, which should be expected. For particular
n values, we get 7 (3) = 5.0 (the exact value T'(3) = 5.2, the error is 3.8%); T (5) = 4.64 (the
exact value T(5) = 4.8, which causes an occurrence of the error of 3%).

In Figures 1a-1d, the numerical integration results of Equation (33) with initial condltlons
(34) and for different values of n (dashed curve) and calculations due to formulae (35) (solid
curve) in the 0.257 interval are given. (We have the exact solutions forn = 1 and n — 00.)
The maxima values of the presented curves correspond to the following abscissa of time:
n =3t = 155,1 = 1.490;n = 5,1, = 1458,1, = 1.396;n = 11,1, = 1.290,
t, =1252;n=21,1, = 1.184,1, = 1.162.

Therefore, we are able to conclude that solutions (38) and (39) give an efficiently accurate
(for arbitrary values of n) approximate formula describing the inversion of the incomplete
Beta-function [7] (construction of the Ateb-functions [8]).

The obtained formulas (38) and (39) are elegant, essentially generalizing the trigonometric
function (they represent an inverse of the incomplete Beta-function in an elementary sense)
for obituary n. This result can also be read in the.following way. The asymptotic inversion of



64 I V. Andrianov and J. Awrejcewicz

} 12
| n==5
]
} 1
|
l. 0.8
|
|
X 0.6
0.4
0.2
Ji 0 B FERSS 1 1 L 1 L |
.75 0 0.25 0.5 0.75 1 1.25 1.5
t
(a) (b)

0.9 0
x 06 xo
1.16
_ 1.14
0.4 1.12 0.
1.1
1.08
0.2 1.06 0.
1.04
0
. -
0 0.2 0.4 0.6 0.8 1 1.2
t
(c) (d)

Figure 1. Comparison of numerical and analytical solution results to the initial-value problem equations (33}, (34)
for different values of n: (a) n = 3; (b) n = 5; (¢) n = 11; (d) n = 21 (the solid line corresponds to the analytical
calculations, whereas the dashed line corresponds to the analytical calculations).

the incomplete Beta-function, realized for large n, occurred exactly as for arbitrary values of
n.

6. A Link between Large and Small § Methods

Consider an elementary nonlinear ordinary differential equation

y=y, y0)=1. . (40)
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The exact solution has the form
y=[1-(n - 1)x]" V-1, @1

In order to solve Equation (40), as has been shown in [3], the S§M for average values of » (for
instance, n = 7) can be applied.

Let us assume that we are going to find a solution to Equation (40) for n — oo. Changing
the variables z = y!/", x; = nx, we get a problem with small §

1

3 =z*"* where §=-.

dx 1 n
For zero asymptotic approximation in the initial variables, we obtain

y = (1 —nx)~"",
which results from the exact solution (41).

Now we come back to the analysis of the initial problem (33), (34) with n — ooc.

It should be noted that a solution to a similar equation has been analyzed using the method
of generalized function series [2, 9, 10].

Changing the variables x = y!/", t = nt, we get the following nonlinear ordinary differ-
ential equation:

' dy dy dy\?
2(1—¢) 1-2¢ 2(1—¢) 3¢ _
1," £ ym +1 ya —(1—8)t (E) + &y =0, (42)
1—e—1+9Y
yO =0 vy T==1, . (43)
-dt

where ¢ = 1/n. For small ¢, we have

T =t—¢erhh+---,

Y=y —eyilny+-.-. o)
We are going to find a solution in the form of

y=Yo+en+etym+-- 45)

Substituting (44) and (45) into the initial boundary-value problem and, after splitting in rela-
tion to £, we get

d?y  dy dyo\?
— — _—r{=) =0, 46
T)’odt2+)'odt T:((11:) (46)
d
30(0) =0, r—d’;—“ = Yo, @7
d’y;  dy
2 - 3
@ T = | “
d .
y1(0) = = =0. , (49)
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A boundary-value problem solution of zero-order approximation (46), (47) and the first-
order approximation (48), (49) have the form
I 5
Yo=T1T, Vi = —ET‘-

Then this process may be continued further.

7. Conclusion

An application of small and large § methods leads to the solution of a new complicated series
of problems [3-6]. In this work, a link between the two approaches has been established which
gives a possibility of extending the class of the considered problems.

It should be noted that the solution determined using the small and large 6 methods allows
for application of two-points Padé approximants.

We hope that the obtained results will initiate a new approach, within the framework of
both small and large § methods, to the problems of small denominators.

Finally, the L6M can be successfully applied to complex problems of quantum mechanics
[11]. However, especially in nonlinear mechanics, for the case of solving at least two-degrees-
of-freedom systems, the discussed approach of applying small and large § methods still needs
to be developed.
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