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Period Doubling Bifurcation and Chaos Exhibited by an Isotropic Plate

Period doubling bifurcations and chaos exhibited by one layer flexible plate are illustrated and analyzed. Using a
difference operators method the problem is reduced to that of solving ordinary differential and algebraic equations.

1. Foundations

In this work a dynamics of elastic isotropic plate possessing in the R®space the bounded and measured (in the
Labesque sense) volume D with the boundary surface JD is considered. The R’ space is parameterized with a use of
the Descartes co-ordinate system OXYZ. The co-ordinate lines are attached to the midplane of the plate, whereas the
0OZ axis has a normal direction with a bottom sense. A surface attached to the given co-ordinate system has the form

z = 0, and the space D,=DucD forms a cylinder of the formD, =q,><[+ h/2 - hf2]. 2, = 2 &N, where:
2= {x, ¥]0sx<a, 05ysbjdenotes a plate projection to the reduced surface, A2is the boundary of the reduced
surface, and +h/2 are the front surfaces fixed on the OZ axis. It is assumed that the plate deformations are within an
elasticity interval. In addition, in our considerations a pressure of the plate layer parallel to the average surface (0Z=0)
is neglected. We assume also that the normal stresses o, in the thickness direction are much more smaller in
comparison with the stresses parallel to the average surface [1].
The problem is reduced to the following djmensionless form of equations
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where: £ -damping, v -Poisson ratio, A = a/b -plate diameters ratio, w = w(¥, y, t) -deflection, F -stress function, Py, P, -
longitudinal loads.

Therefore, a problem of the partial differential equations (PDE) solution is reduced to that of the differential -algebraic
equations (DAEs) in regard with the stress function F and the deflection function w, correspondingly

C(i, , + ;) = {A(w) + Bw,F) - Hw)},  D(F)=E(w), | @
where:
1 ) , .
A(w)=r2-m(’1 w, + 25w, + FAw,), Bw,F)=Aw,AF; + Aw;AF, - i, wAF,,
Hw)=Aw,P, + Aw,P,, D(F)=12(1-v)AF), Ew)=-iw,iw,+[4, w,],
A = hla [Y(x-h,)-2Y(x)+Y(x+h)], o

A= i_,[Y(:c- 2h )~ 4Y(x—h )+ 6Y(x)- 4Y (x—h )+ Y(x+2h)],

o¥—h)-Y(x+h,y-h)+Y(x-h, y+h)]

[Y(x-h, y-h)-2Y(x- h‘,y)+Y(x+h y-h)+Y(x-h, y+h)-

j\-r hzhz
-2Y(x,y-h)+4Y(x,y)-2Y(x+h ) +Y(x+h y+h )-2¥(x.y +h)]

In order to solve equations (2) with the initial conditions using the boundary condition (2) the following algorithm 1s
applied. The initial deflection values in each of the finite-difference mesh nodes are substituted to the right-hand side of
the AEs, and then the corresponding stress function F) field is obtained using the Gauss method. The obtained stress
function values F, are substituted to the right-hand sade of the ODEs, which are integrated using the Runge-Kutta
method. In result a field of deflection w, is obtained in the next time step.
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2. Analysis

For a test purposes a series of the known problems have been considered. The first critical loads for A =a/b=1 for
plates subjected to a stretching constant load P,(P, = 0) have been calculated. The critical loads are determined using
the dynamical excitation. The latter one has been defined by the initial conditions of the form
w,,, = Ay sinmxsinny, w|,_, =0.

We illustrate and analyze a transition to chaos by period doubling bifurcations on the example of squared free
supported plate (boundary condition (2), A=a/b=1). The longitudinal load (P.) acts along the sides
x =0, x=1(P, =0).Before a stationary state loses its stability, a basin of attraction becomes very small and always
existing perturbations throw the system from that basin even before full vanishing of attraction property. This behavior
is related to the so called stiff stability loss. The mechanical systems leave the stationary state by jumps to a different
state. The new state can be a stationary one, characterized by a more complex behavior. Consider a stiff stability loss of
the squared plate in relation to the longitudinal load Py further considered as a control parameter. The Hopf bifurcation
sequence is being analyzed. For Ay =0.001 the following sequence of the Hopf bifurcations (in relation to Px ) has been
detected: 5.3; 6.7; 7.02; 7.1; 7.1245; 7.129385; 7.129385. For Ax =0.3 the corresponding bifurcation values of Pr are: 5.0;
6.3; 6.431. A small increase of the last Px values correspond an occurrence of chaos.

A convergence of a sequence of the bifurcation values P, and P. are characterized by § =(F,  -R,)/(F,,-P, ).
With an increase of k the value of &, does not depend on k and converges to the constant &= hmé; 4.669201 This
Feigenbaum constant describes a convergence velocity of the bifurcation parameter P, — P Aﬁer the first period
doubling the Poincaré section rotates of 90°, becomes broader and is sloped of about 135“ to the horizontal axis. In the
phase portrait a sufficient velocities change is observed. The higher harmonics are added to the fundamental one.

For P, = 6.7 in the Poincaré section the strange attractors occur as a result of a weak orbits occurrence having a circle
shape in the transversal cross-section. Much more higher velocities are observed. The phase portraits and the Poincaré
mapping are similar for every plate's point. Looking for further values of the bifurcation parameter P, (k=34567)it
is seen, that a sequence {P. } is converged to the critical point P =7129405.

Beginning from the third Hopf bifurcation a cross-section of the Poincaré map has an ellipse form, the larger axis of
which is sloped of 45° to the horizontal axis. After the fourth Hopf bifurcation an orbit cross-section possesses a complex
form exhibiting a kneading phenomenon.

For F, = 7.129405 a regular motion is still observed. A change of P, for 1x10% leads to a stiff stability loss
(P:. =7129406). The system by a jump has achieved another state. In this case the time of a stiff stability loss
occurrence belongs to the largest one. It means that with a very slow change of the P, parameter so called pulling of
stability loss occurs. Even for the critical P value a dynamical stability loss plays a secondary role for t<¢,, ie.
before an occurrence of a stiff stability loss. With an increase of P, the time of transition to a new dynamical state
decreases ( P, = 8) and some of the attracting orbits die.

To conclude, a qualitative picture of dynamical plate behavior is similar to that of its centre. A number of Hopf
bifurcations depends on the initial exciting amplitude Ax. An increase of Ay accompanies a decrease of the Hopf
bifurcations to three (Ax = 0.3) and two (4# > 0.3). For larger Awx a chaotic attractor occurs.
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