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1. INTRODUCTION

Recently, a growing tendency has appeared in non-linear dynamics to analyze two-
parameter families of the ordinary differential equations. Many interesting phenomena,
both from the theoretical and the applied point of view, are expected in the two-parameter
families which cannot be found in one parameter families [I, 2]. Among others, these
include hysteresis points, isola centers or multiple bifurcation points. The analysis of
two-parameter families gives the possibility of tracing explicitly how coalescing points such
as isola centers, hysteresis centers, bifurcations or Hopf centers occur naturally as
organizing centers [2].

Thus, the problem of how to find a two-parameter family of solutions is of fundamental
importance. The analytical two-parameter solution enables one to solve many different
questions (for example, one can find the critical boundary of the family considered or one
can calculate a branching set of parameters).

In this letter a local analytical method is developed to obtain a two-parameter family
of solutions which lies near the known periodic orbit. Considerations are limited to the
case in which the dynamical system is excited periodically, and excitations and non-
linearities are expressed by two independent small parameters. The most important
case is also analyzed; i.e., when both excitations are in resonance with the linear part of
the system. Of course, the presented method can be extended to the k-control space
(k > 2).

This approach develops the author’s earlier works [3-6], in which two-parameter
solutions for coupled oscillators with parametric excitations and discrete-continuous
systems with time delays were analyzed. The present method is related to the
asymptotic methods widely described by, among others, Malkin [7], Bogoliubov and
Mitropolskii [8], Hale [9], Nayfeh and Mook [10], Nayfeh [11], Zubov [12] and Bajaj
and Johnson [13].

2. METHOD AND RESULTS

Consider the dynamical system
X=F(, X, ¢ pu), (1)

where (a) the vector function F is given for t € (— o0, +00), X € R" and is continuous in
its independent variables; (b) F fulfils the Lipschitz condition [F(1, X)— F(t, Y)|| <
C||lX — Y|. where C is a certain constant; (c) F(1 + 2n, X) = F(t, X) for ¢ = u; (d) the
solution of X = X(r, X°, 0y is determined by V¢ >0, for X = X° if t =1,. We shall seek
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periodic solutions Y(t, ¢, u) dependent on ¢ and u such that Y - X°if¢ -+ 0+0 and u — +0.
The problem can be reduced to the analysis of the system

Y=R@)Y +®(t)+eF"t, Y, e pn)+ uFo, Y, e p),
FO(t)=F9%t +2n), ®(t)=d(t + 2n), i=1,2. 2

We shall consider the resonance case assuming that simple eleméntary divisors correspond
to the multiplied resonance eigenvalues. Let us assume that from among the 4,,...,4,
eigenvalues there are k zero ones and 21 values with the form +iMN~' (M and N being
natural numbers) which will be denoted by v,. There is always [14] such a linear
transformation of vector Y with real and constant coefficients, that the system (2) can be
reduced to the form

du,/dt = ¢, () +eF"(, U, X, Y, Z, e, )+ pFP(t, U, X, Y, Z, ¢, p),
dx,/dt = —v,x,+ a,(t) + €A, U, X, Y, Z, &, p) + eAP(t, U, X, Y, Z, ¢, ),
dy,/dt =v,y,+n,(t)+eEM, U X, Y, Z, &, u) + pEX(1, U, X, Y, Z, ¢, p),
dz,/dt =Y p,+6,(t) + T, U, X, Y, Z, &, ) + uT'2(t, U. X, Y, Z, &, ),

i=1
s=1,...,k, p=1,...,1 r=1,...,m, k+2+m=n. 3)

The matrix [P,;] has no resonance eigenvalues, and the following have been assumed in
equations (3):

U=(uls--'9uk)9 X=(xla---9xf)s Yz(yla""y!)! Z=(Z|,...,Zm).
The following exchange of variables is performed:

X, =X,C080,1 + y,sinv,t, y,=X,sinv,! + y,Cosv,t, p=1...,1L (4)

From equation (3) one obtains
dv,/dt = W,(1) + eFO(L, V, Z, &, p) + uFOL, V, Z, &, p),

dz,/dt = Y puzi+6,(t)+ el V, Z, e, u) + ul' 21, V, Z, ¢, p), Q)

i=1
s=1,....k+2], r=1,...,m, v, = U, Vksp=X,, Vks14p=Vp

and s=1,...,k, p=1,...,1. For ¢ =u =0 the system (5) has a family of periodic
solutions, with a period 2nN, dependent on 2(k + 2/) constants if the following conditions
are satisfied:

2N
J. W.(t)dr =0, s=1,...,k+2l (6)
0
If conditions (6) are satisfied, then the family of periodic solutions being sought is

r, =00+ 0@ =CV+ CH+2 f W, () d,
0

Z=Z"4Z=2"C+2 -[ e™ =90 () dr, ™

0

-~

where
M2nN

O)=(0,(@),...,0,(1)), C = (I —e™P)~! J eP¥ =99 (1) dr, (8)

0
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and C® is connected with the parameter ¢, and C'? with the parameter u.
We look for a general solution of equations (5) with the following initial conditions:

0,=CO+CP+d"+d®  Z=2C+G"+G?, 9)

forr=0,s=1, , k + 2. According to equations (5), we find that

0

0,(1) = CV + C? +d" +d? + 2 W(t)dr-{-sj F (1, V,Z)dt

+ ‘"j FO(z, v, Z) dr,

Z(t)=e"Q2C + GV +G?) +2 J. eM 9@ (1) dr +¢ ,[ e -9z, ¥, Z)dt
0

0

+ ,uj. eP'=9rd(z, v, Z)dr. (10)
0

After accounting for periodicity in equations (10) we obtain
2aN

.Fi”{f. V, Z, £, j.l) dr + u J. F‘E‘z)(ti Vs Ze £, ﬂ) dta

0

2aN

eSSV 4+ uSP =¢ -[

0
s=1,....k+2 1))

NP

( e27NP I)(G(” + G i) +¢ f e(!xN——l‘)[‘(l)(‘[__ V,Z, ¢, ,u) dt

0
2aNP )
+u J. e - (¢, V, Z, g, p)dr =0. (12)
0

In order to have D" -0, D® -0 and G" -0, G® -0, at ¢—>+0, u—+0 (where
DV =@dP,...,d" ), D?=(dP....,dP,)), it is necessary to satisfy the conditions

2aN
SOEP, ..., d ) = I FO(c, V, Z,e, p) dt =0,

0

SOEP,...,d2 )= J F,V,Z, e u)dt =0, s=1,...,k+2L (13)

Equation (12) expresses G and G? as implicit functions of the quantities &, g,
dyv,...,d{"., and d{,...,d® . The integrals in equations (13) are calculated on the
basis of the periodic solution (7). Not every periodic solution of equations (7) can be the
limit solution for the dynamical system considered as e—++0 and p— +0. Only if the
solutions of the forms (9) satisfy conditions (13) and the inequalities

D(SP,..... S )/ D, ... dffsx) #0,
DSP, . SELDUP, ... dP.) #0 (14)

are satisfied, does the initial system of equations have a 2zN periodic solution for all
sufficiently small ¢ > 0 and u > 0. which approaches without restriction (for ¢ — +0 and
u— +0) the 2aN periodic solution of the non-linear system (5).
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