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STATIONARY AND PiONSTATlONARY ONE-FREQUENCY PERIODIC OSCILLATIONS IN NONLINEAR
AUTONOMOUS DISCRETE-CONTINUOUS SYSTEMS WITH TIME DELAY

J. AWREJCEWICZ (LODZ)(*)

The paper presents an analytical method of determinating one-frequency periodic oscillations in nonlinear
autonomous discrete-continuous mechanical systems with time delay, on the basis of the asymptotic approach.
The periodic solutions are sought in the form of some particular asymptotic scrics with respect to two indepen-
dent bifurcation parameters - one is related to nonlincarity and the other to delay. Some technical problems,
which can only be solved using this approach, are demonstrated. The method is illustrated in a mechanical
example which includes a self-excited oscillations of a beam connected with a discrete one degree-of-freedom
system.

1. Introduction

One of the important problems of mechanical and automatic control engineering
is active control of the oscillations of the mechanical objects by means of control units,
which can frequently be treated as inertial systems with concentrated parameters and time
delay [1]. The subject to control can be nonlinear mechanical systems with concentrated
(further referred to as discrete mechanical systems) or distributed parameters. The latter,
referred to as continuous systems, are dealt within this paper.

In real control systems of this type, the control unit influences the object subject to
control and the state of the controlled object is monitored only in a certain isolated points.
It is usually possible to find controlled objects, which are governed by partial differential
nonlinear equations as well as control units, which can be modelled by ordinary nonlinear
differential equations.

As has been mentioned above, the systems governed by nonlinear partial and ordinary
equations have many technical applications and they are considered in this work. It is a
continuation of earlier work, where the two-variable asymptotic expansions technique has
been used to analyze periodic oscillations in nonlinear parametrically excited mechanical
systems [2—4], bifurcated oscillations [S,6] as well as oscillations in discrete-continuous
systems. The presented research develops the approach from [7], where similar systems
were sought in the form of power series of two independent perturbation parameters.
The recurrent set of linear differential equations obtained by means of comparing the
expressions found at the same powers of two perturbation parameters were then solved
using the harmonic balance method. The approach, however, enables one to analyze
only the steady states of the considered mechanical systems. The technique developed
and illustrated here is more universal. By the use of such a method the steady and
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unsteady (transient) oscillation can be analyzed and, as it will be shown in a future
paper, static-type catastrophes during oscillations can be detected.

The presented technique is a generalization of classical asymptotic methods, which are
widely treated in the literature [8-17], to the analysis of discrete-continuous mechanical
systems governed by partial and ordinary nonlinear equations with two independent
parameters.

2. Method

Let us consider a discrete-continuous system governed by the following equations:

62‘13(:2, ) = Lgm) {u(t,z)} + cfi{z,u(t,z), y(t — p)},

@.1) ,
%9 - ;,Apy(t - 1) +eF {y(t — ), u(t — p, t - £)}

subject to the following non-homogeneous boundary conditions
2.2) L&D u(t, o)) oes = egri{yt —p)},  h=1,...,m.

The coordinate ¢ denotes time and ¢ € R; z is the vector of the coordinates and
z € (GUS), while § is the limiting set of G; u(t, ) is a certain scalar function determined
in the set R x G and L) is a linear operator of order 2m on z; L™ is the linear
differential operator of j < 2m — 1; y and F} are vectors of an m-dimensional space;
A, are constant matrices of (m x m) order; Fi, f; and gn; are functions of y(1 — p),
u(t — p, £), £ € (GUS), while 7, and p are time delays. Finally, we assume that ¢ and
u are small positive parameters.

Thanks to this mathematical formulation of the problem, the presented analytical
approach can be further used for many different discrete-continuous mechanical systems
governed by Eqgs. (2.1). Thus we will continue our consideration first in general form,
and then, in order to demonstrate the physical insight of the problem, we will illustrate
the method with an example from the area of mechanics.

The problem including non-homogeneous boundary conditions (2.2) can be reduced
[1,7] to one of homogeneous boundary conditions. Thus we analyze the following sys-
tem:

&‘é(tzlﬂ = _Lfm) {V(t, 3.')} + Efl {xa V(t, $), y(t - ﬂ)} ’
(2.3) t

dy(t) _ « A u(t +eF {y(t t £
=== _g pY(t — 1) + eFy {y(t — p), v(t — ), £},

where v(t, z) fulfils the Homogeneous boundary conditions

(2.4) L&u(t,2)lees =0, h=1,...,m.
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From the first equation system (2.3), and for ¢ = 0, we obtain
L)X (z)} + 0 X(z) =0,
Lg"j)lzes =0: h = 1:'-'ama

while from the other we obtain the following characteristic equation:

(2.5)

P
(2.6) D(p) = det {E Ape=" — Ep} .

p=0

In the considered dynamical system, oscillations will appear if o, = w2, and/or if the
characteristic equation (2.6) has imaginary eigenvalues p; = tiwy;.

In this paper we shall consider the case where 01 = w2 = w? and the other eigen-
values of the first equation of the system (2.5) amount to a, # {(p/q)w1}?, where p and
q are integers. Moreover, it is assumed that the characteristic equation (2.6) does not
possess imaginary eigenvalues. We seek a one-frequency solution of the dynamic system
(1) with the frequency approaching w; for ¢ — 0 and 4 — 0. To this aim the approach
suggested by Krylov-Bogolubov-Mitropolski will be used. We look for a solution in the
form

K L
u(t,z) = a(®)Xi(z)cospt + 3 S ek ptViz, a(t), (1)},

27 k=1 I=0
27 c L
y(@) = ) > yafa(®), v(t)},
k=1 [=0
where
Z: 25"#114&1{0(*)},
(2 8) k=1 =0
dy -
o =@t Z Es #' Bu{a(t)},
k=1 I=0

and Xi(z) is the solution of the boundary problem (2.5). From the first equation of (2.7)
we obtain

v da ‘lf) E 3VH da 6VH d¢
T {dt"‘”“/’ dtsm"”}Xl(-’”)*ZEe I{Wﬁ’*a_cp'?z?}’

k=1 I=0
v d?a da dz/) d%y)
29 7= {dﬂ SY -2 g Sy - e sing-

—a (d"b) cos‘df}X1(::)+E Y et ,{83;2,; (dt) +

k=1 I=0

OV dy da | OV dPa . 9V (@)2+ OV dzw}

Y2 ey di 4t T 0 2 T oy v dit
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From the first equation of (2.3) we calculate

@10) ¥ 1) = { e x@) - { (“*”) Xi(@)+

+ Lf}"’){Xl(z)}}a} cos Y — { %‘-:— %?- +a if} Xi(z)sinyp+

K L 2
32Vu da 62VH d‘l,l) da 8VH dza
k ' ——————— — —— — —— —————— ————
+E ge H { 9a (dt) Y2y dai ai t oa azt

32‘/H' d‘w 2 aVk[ dz'l,b (2,.")
v (@) + 5 @ - |

From the second equation of (2.7) we obtain

ayu da 6y;; d¢
(211) —-=EZ“{ -y

k=] =0

Moreover, taking Eqs.(2.8) into account, we calculate

(2.12) dt2 = {Z Y et 'dA"'} {i i‘e*pm,} =

k=1 =0 k=1 [=(
dA dA dA
2 10 10 11
= g*Ayp——— P +¢€ p{———da A"+_"da Aw}+
+e3{ B A0+ 0 + O k1= ),

2
(2.13) (‘f;f) X1(z) + L& (X y(z)} = {E ng",u’Bu(a)} X+
K L
+ 2 E ZEk#IBu(a)Xl = 2ew By X1+
k=1 I=0

+52{2L"1Bm + B }Xl + 25]-“-""IBHAYI + 2 H{Blan +w1B21}X1+
+2ep%w B1a X1 + 263 {w1 By + By Bio} + O(*y!; k +1 = 4),

because in accordance with the first equation of Eqgs. (2.5) we have X1(z)w?+ L8™(X (z)}
=0 and

(2.14) -f—g- tf;f E ZE*;JJAH {wl + Z,;:Ebp‘Bﬂ} = £w1A1o+

k=1 =0 k=t
+82{w1Am + AIOBIO} + spmAn + Ezﬂ.{wlAm + A1 By + A]()Bu} +

+ep? Apwy + 3{Asowr + AxBro + AwBx} + O(e*p'; k+1=4),
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K L
@15 - {Z 3 et f"B“} {Z Estpmu} -

k=1 [=0 k=1 =0
_ 248y 2. [dBy dBy
€ d—A otep {—dz-/ln + —da—Am} +
+¢3 {%Am + By Alo} + O(E ; k+1=4),

K L 2
(2.16) ( ) {Z > ety A,,} = g2A%) + 26%uAAn+

k=1 |=0
+2€3ANA10 + O(Ekp'; k+1= 4),

2 K L 2
(2.17) (%—) = {m + Z: Z:SE}IIB“} = wf + 2ewy Byg + 2 u Byyjwy +

k=1 =0
+82(2N1B20 + B%O) + 25#2.812(01 + 282;}(&)1.321 + BuBm)'l‘
+2£3(w1530 + By Bjyo) + O(Ek,u'; k+1=4).

Since y and v can be expressed as power series,

y(t —p) = E:, d:gft)( p",
(2.18) n=0

N
vt-pm) = 3 2 LULD
n=0

then the functions ¢ f and € F' after expansion in a power series of small parameters u
and ¢ and reduction to n = 1 will assume the form

2.19)  ef{z,v(t,2), ¥t - W} =e{f{z, v,y 4} +¢ { ‘3"5 :,, +

of dy1 of dﬁu af dv of dy:
+26y; ds &~ 1‘%’1& T Ov dp Z@y; dp

~0f diul . .‘?f.-((iﬂ) of d&v =0 (di'l')
+an.'lk dﬂ }+6 {auz +ay dsz Zayl

k=1
dyu.- of d*y of dy Yir
+z ( ) Zay; de? Za U € *

k=1 ayu k=1

=\ 0%f dvdy N 8f dvdy, o~ 0? f dy: d!’n}
+2 — = +2 + ' +
,Z_I: dvdy de de g dvdy, de de kz-l l=} 8lllallu de de

f (dv\? 8f dv 8 of i,
2 — — —
TH {W(du) * o du’+,_ ay? ( ) Zay 2
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d!lu of d’-ylk — 0%f dv dy
( ) +Zal,, Z vy dp dp "

ﬂ k=1 =]

(2.19) . E

[0011!.] . k=1 ay;k

& 32f dv d!}w kA 32f dyi d?}lk
+2 Ml 1 RN ==
Z vy dp dp E ;; dyidy,, W dp *

0*f dv dv Bf d’u of dzy; of d*yy,
* “{23 2dpde T 2ov dude T zay, dnde ;agu dpde *

+223 f dy dy +ZE 0? f dyu dyu f: 0 f (dV dy; + dv dy;)+

Oy du de T T 557 d iy, \de dp ~ dp de
= 0f (du dyy , dv dyu,) O\ s 0 (dy; iy
+ A — 21k g + .
Eavayu de du dp  de kE-l ,z_;ay,ayu de d“
dyi d?fu kI —
+dp v +0(@E"uy'; k+1=24),

(220) EF{I!”'(t - )u'af)a y(t -P')} =& { F{z’v:ﬁl:y:il}"'

OF dv oF dy: oF (}ylk oF oj’vl
{Bvde Zay; de gz;aii}n de }+3!:’1 & T

OF dv OF dyi , 3~ OF dyw OF dun
— + +
{zw ou ; oy du ; 0y G vy dp }

0*F OF d*v 0*F (dy
e {61/2 (de) Ov de? Z Byl ( )

) 2
m 2 . m .
Sade by () Lo 0)
= O d k=10Yy; ¢ i1 0y % 6:/1 €
oF d2V1 O*F dv dy = F dvdy,
9, de* Zayay‘ de de +2kz-:1 wdyy, de de "
™ 92F dy d§, . F dvdi
+2 +2 ==
Z Oy 0y, de de Ovdv, de de

k=1 I=1
o~ 0*F Onmdy <~ OF  dy, d&l}
> - +2 . ] +
= Oudv Oc de ; 09y, 0y de  de

0%F L OF &v 2 0F (dy\® <~ OF dy
{3v2 ( u) v dﬂ2+§;5ﬁ(3—ﬁ) +,§3§?W+

+2
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m 2 L 2 2 . 2 .
e 2R (4) 2 () 2 g
[cont.] . k=1 891& P" a 1 H 6”1 lu'
PF dvdy <~ OF dvdy,
+2 +2 - +
Zayayr du dp kE=:l vdy,, dp du
TN e 0*F dy; dylk 0*F dv d!’l N O*F dy; dl;l
— 5 +2 T +2 — 5 +
k=1 I=1 By;Byl,, dﬂ d,u 31/6111 d# dau 1=1 6y;aV1 dp‘ dﬂ

= azF dl}lk dl;l
+2 +
kz,:laﬁ,kfh;l dp dp

+2

ven { LO°F dv dv 22 OF dy dy | <~ OF i din

o2 du de Oy? du de o 3?33 du d&‘
82F db’l dv1 82F dv dy; dv dy;
Yo dn e Zdw‘?y; (EE*@ ds)+
O _OF dvdyw | v djy ), OO _OF ﬂdy'lk+@dﬁlk)+
k=1 8”‘93;1& de dp dp  de k=1 i=1 3y;8;:}1,, de dp du de

+

i 32F dy; dl;l dy; dl;1 ki 32F d?}lk dl;1 dﬁl di[u
LA (R + - + +
=1 83;;8131 (dg dp du de Eaﬁlk oy de du de du

L OF (dvdsy | 45 v Z OF Fy  OF 0w

Ovdv, \de dp  de dp on 3u3€ BV Ople

oF 25, & OF o i
—— a3 —5-+2 —
v, Ouoe —~ 0 ouode

+2

} +O0(@ekp's k+1=4),

where 3, = —u(dy/dt) and vy= —p(dv/dt). Then, in accordance with Egs.(2.9) and
(2.11) we obtain

K L
s _ E, ?ﬂ_{r_{da 3yu d%b}
y‘"‘gg“‘{aa @ " oy dt
(221) o
: dy Vi da | OV dy
o= w{alfsmy - e - 3 S (T G B )

k=1 I=1

The derivatives of the fuactions in Eq.(2.19) are calculated at the point = ¢ = 0,
w(t,z) = a(t)X1(z)cos P, yo = 0 and yo = 0, while the derivatives in Eq. (2.20) are
calculated at the point p = € = 0, »y(t,£) = a(t)X1(§) cost) and yo = 0.
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Having accounted for Eqs. (2.7)—(2.11) in Egs. (2.19) and (2.20), we obtain

(222) * effz,mt,2), yt-m) =¢ {f(z,u, D+e { v+ y g—fy(m,;} +
1=1 U
*f 3f f 5 — 0 —~ 0%f
{ 902 Vlz Vm + Z 3y 2!!(10)1 + E 3—3"2?/(20): + 2; WVloy(m)r} +

of 0y
+2€p{3-fV11 +E ?}(u): Z 61}{1‘ a(:;)kwl}} +O(F'; k+1 = 4);

k=1

(223) EF{x ll(t —Hy E)a y(t ﬂ)} =& {F(z v, ) +é { aapvrlﬁ + Z aFy(lﬂ)!}

av? 6

0*F BF 62F

0*F 32[-‘
+Z y(ZO)I ZZ dvdy me(lo):} + p? 5—-—-—&X1wl sin Y+

=1 Vl

+epd ) 9 F aw1 X 1(&)yaoy siny + 9 F VioX1(€)aw; sin ¢+
1=1 0yovy D

oF oF

+2 y +2-— V1+2—-——{BloX1(§)aSiﬂ¢"
'z-; (‘j any v’ v

oV oF ay(l!)k }} ko
-A X({)oosgb——w} + 0" y; k+1=24).
101 a‘«b 1 kzl 8y1k a¢

From Eq. (2.10), after accounting for Egs. (2.14)—(2.17), we obtain

(2.24) g t;' L& Nu(t,z)} = ¢ {{ 9 ~ LS?""{%}} -

—2wy BypX1a cos Y — 2wy A9 Xy sin ¢ } + 2 {{wl aa:b/io - Lgm){Vzﬁ}} +

0%V, 0%V, dA
+2wlBloW;0 + 2&)11410533% + {Aw——c—z—ég —{2wy By + Bfo}a} Xicosyp—

- {ZwlAm + 2A10B1o + — dBm Alg} X sin 'l,b}

+ep {{wn 29V _ Lf—.zm){Vu}} — 2w Bii X1acos — 2wy Ay Xy sin lb} +

02
0V, 0*V; ‘ 0%V,
+£2ﬂ {{wf 6‘([;1 L(zm){vzl}} + 2y Bio—— 8¢;1 + MIBHW;O-F
0%V dA dA
+M1Alog gl’; + waAna 3112 { mAn + v = Ay—
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(2.24)

[cont.]

_2(BoBy; + w1 Ba)a } Xy cosp — { 2wr Aot + ArtBro + ApoBua)+

+a (@Au + dBu Alo) } X sin ’f’} +ep? {{ 23@:}’;: L(szm){VH}} -

da da
. 3 23 Vo (2m)
— zwlBllea cos P — 2A12X 1wy siny » + ¢ wy aiﬁz — Lz {Vm} +

0%V 0%V,
+2w1 Bio—=—- a¢2 + (2&01.820 + BZ) a¢;0
dByo 3Vm dAq V1o anm
tAw g g YA g ga TGt
3 V'lo 2 3 I/ll)

+2(€U’1Am + A[]]Bl[))a 31/) + AIQ—W—‘*‘

- {Z(Agowl + ApB + AmBzo) +a (ddBawAm + Bz Am) } X;sin w} +
+O(E ui k+1=24).

From the second equation of system (2.3), after taking Eqs. (2.8) and (2.11) into account,
we get

(2.25) Z: Ayt—1) =€ { ay%( ¢ w)w - Z A,yo(a, ¥ — prl)}
p=0 p=0
+e2 { 3:!;1%2, ) 4o+ 3:4/2?3(; W)+ 3.1;1((:9(:;, g,

=0 p=0

P
-3 Apyn(a, - 'rpwl)} +ep { %ydl)lwl Z yu(a,y - r,,wl)}

d d F
+ep { gu!‘l + %y:b; By + ay;]lwl > Apya(a, 9 — prl)} +
p=0

+€ﬂ2{ ay,,};zwl ZApylz(a Y- prp)} +¢£ {%Am‘l‘

p=0

Oy Oyso , 0¥ p  Oop

+a Ay + 7% w1 ¥ B0
P
—ZAPym(asw_ prl)} + O(Ek}j'; k+1l= 4)
p=0

-

When comparing the terms found at the same powers of ¢* u' we determine a sequence
of recurrent linear differential equations, which are given in Appendix A.
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After expanding the function f(-) into a Fourier series one obtains

(2.26) fey = Z {b(yn (@) cos Ny + c(-ya(a)sinnyp},

n=]

where

1
b(.)n(a) = m

fey(z,a,9) X (z) cosny dip,
2.27)
f

cen(a) = er_l )(z,a,¥) X (z)sinny dyp.

I 2
o]
0 0

I 2
J«]
0 0
If we equate the coefficients of X(z)sin ¢ and X;(z) cos 9 to zero, we obtain A; and
By, which are given in Appendix B. According to Eq. (2.8) we get

da

() = =

=cAp+ EzAzo + 83A30 + EﬂAn'i'
+e2 Ay + epAp + O(eF 'y k +1=4),
(228) w(a) = -t-l—% =wi + By + EzBm + 63.830 + EﬂBu+

dt
+e2uBy + p®Byy + O(e* ' k +1 = 4),

at the initial conditions a(tp) = ag, ¥(to) = Yo.

From the first equation of (2.28) we obtain the dependence a(t), which upon in-
troduction into the later equation of (2.28) enables us to determine the dependence
¥ {a(t)}. Thanks to this it is possible to analyze the slow transient processes leading to
steady state. The latter are analyzed by assuming that da/dt = 0, which leads to the
algebraic equation

(2.29) G(G,E,ﬂ) = Ap+cAy+ 82A30 + pAn + Ep.Azl + pzAlz = 0.
If the calculations are limited up to order €, we get from Eq. (2.29)
(2.30) Ay =0,

which enables us to find: (a) one isolated solution; (b) few isolated solutions; (c) no
solutions. However, sometimes the phase flow of the considered starting equations can
be very sensitive to changes in the amplitude a and/or the parameters ¢ and p. For
these reasons the full equation (2.29) should be taken into consideration. The solution
of Eq.(2.30) can serve as a first approximation for the numerical solution of the full
equation (2.29).

Now we briefly indicate the variety of problems which can be solved using this ap-
proach, and that can not be solved by the use of a single perturbation method.

A. Suppose that the parameter € undergoes slight changes, which are impossible to
avoid. We want to control such changes by treating 1 as a control parameter. Inserting
a = a® = const into Eq.(2.29) we can find G(¢,u,a%) = G(¢,p) = 0. Thus, in
accordanece with the changes of € we can find the values of p in order to maintain a
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constant amplitude. The possible solutions of the problem are discussed in detail in
Appendix C, which is based on reference [18].

B. Suppose that we would like to have a = a(¢) and because the shape of a(¢) should
be fixed a priori. The problem is then again reduced to the implicit algebraic functions
of second order; further discussion is presented in Appendix C.

C. Different branching phenomena can be expected. We can find the hysteresis variety
points defined by the following equations:

G(a,e,p) = 0,
(231) ' Ga(ﬂ,E, iu') = 0!
Gaa(ar‘gap) = 0.

If it is possible to eliminate the amplitude a from one of Egs. (2.31), then the other two

enable us to find the hysteresis points. The bifurcation and isolated variety points are
defined by the following three equations:

G(asaiﬂ) = 01
(232) Gﬁ(a! €, p’) = Os
Ge(a,e,p) = 0.

As mentioned above, Egs. (2.32) can possess several different solutions for a. Thus
M -multiply limit variety can be defined by the following equations:

G(als €,y l‘) = 0,

G(am,&,1) = 0,

(2.33) :
Ga(alssa ﬂ') = 0,

Ga(amsgsﬂ) = 0.

Using u as a parameter, we can control the branching phenomena mentioned above.

D. We can find the (¢, 1) set of parameters for which no real solutions of Eq. (2.29)
exist. Thus, a domain of the assumed solution (2.7) can be defined in the two-parameter
space. '

E. Suppose that we want to change the amplitude of oscillations, but the frequency of
oscillations should not undergo any changes(or it should be controlled only by the linear
part of the equations). In order to fulfil such requirements we have:

(2 34) G(a,e,u) = Ajo+cAy+ £2A30 + pAu + EﬂAu + p.zAlz = (),
| H(G,E,p) = /Blo*l'EBzo +62A30+p,Bu +E;J.B21 +p2312 = ().

After eliminating a from one of equations (2.34) there remains one equation, which
defines the implicit algebraic function of second order in ¢ and u. One can freely
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choose one parameter and then calculate the value of the second one. Thus, by such
an appropriate choice of the parameters ¢ and u the amplitude of the one-frequency
oscillations will change, however, the frequency w; will always remain constant.

Finally, we have to emphasize that our calculations have been limited to the order
of O(u?), because higher powers of u do not cause a good approximation for the series
(2.18).

3. Example

We consider the following example from the field of solids and structures. An
elastic beam of constant cross-section is connected by a spring k, with a discrete one

degree-of-freedom system (see Fig.1). We assume that the linear coupling stiffness in-
X

ulxt) ‘ P

0
—
/ AW
Elm 7
k?
x -
M
c k

F1G. 1. Calculation example: Self-excited vibrations of a beam connected with a one
degree-of-freedom system.

volves a time delay and the nonlinearities, the time delay, and the amplitude of oscil-
lations are small. Our system is an autonomous one, and the Van der Pol damping
acting on the beam is responsible for oscillations. Within the framework of the usual
assumptions of the elementary theory of bending we obtain the following set of governing
equations

2
1%+ T = i T~ k{1, ) ~ 8z - D - ),

(3.) .
Mj = —cy —(ko + k2) + kau(t - 4,7),

where the damping coefficient o and 3 and the mass m are taken per unit length, and 4
is a time delay. The other standard parameters are given in Fig. 1. We have the following
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boundary conditions:
W2, t)|cmo = W(Z,1)zmt = 0,
(3.2)
Pu(z,t)| _ Pu(z,t)| 0
9z2 |,., 022 |,

In addition to nonlinear mechanical systems with time delay (see, for example [19,20],
the governing delay nonlinear differential equations can be found in problems related
to biology, blood circulation, and control systems [21-23]. Therefore we transform the
dimensional equations (3.1) to a nondimensional form. Thanks to this we reduce the
number of valid parameters, and our further calculations are valid not only for the
mechanical system shown in Fig. 1, but for others as well. The new nondimensional
governing equations are

62w(T 6) 341!)(?', €) = 8(1 2( ’E))aw(-r £)

ot tP g
(3.3) — eAw(r,£) + e B§(€ — E)n(r — p),
d? d -
—;}—g—) = —5022 + e Fw(r — u,§),

and the new boundary conditions are

w(€, 7)lg=0 = w(£, T)le= = 0,
Pw,T,)| _ Pw )
Torz [0 g2
The nondimensional parameters are defined as follows:

T=0t, p=04, E=zt,  w=(fa )iy,
€ = a(m)1, pt = EIm~10Q-2-4, A = ka™l-10-1,
B =k 333", C=cmaM-', D =(ko+k)M-102-2,
F = kyma~3p-30-1-1M-1,

In order to avoid tedious calculations we assume that

wr—p) = 0 - gL,

Bw(r 3 )

(3.4)

= 0.
£=1

(3.5)

(3.6)
w(r — 1, &) = w(r) - p—p =’
Taking Egs. (3.6) into consideration, we obtain from (3 2) the following set of equations:

2

6.7 - eAu(r,) +eBa(f—E)n(-r)-suBa(e—E)§§,

&n(r) d - eur 2200
grz ¥ Dn=—eCp veFu(n ) —enF =520
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From the first equation of (3.7), and for € = 0, we determine the frequency v = (n7p)?,
n € N. Limiting our calculations to n = 1, and with regard to the earlier section, the
solutions of (3.7) are sought in the form

w(€,T) = a(t)sin w€ cos P(T) + eWio(€, a, ¥) + e2Wa(£, a, )+
(3'8) + 63W30(§a a, 11)) + EPWH(Ea a, ’fff) + 52#W21(6a a, ¢)1
n(T) =€mo(a, ¥) + e2mu(a, ¥) + >mo(a, ¥) + +eunu(a, ¥ + e2unu(a, ),

where Wy (€, a, ¥) and nii(a, 1) are the limited and periodic (with regard to 1) functions
to be obtained. The unknown amplitude a(7) and phase 1(7) are calculated from

% = eA1(a) + €% Ax(a) + £ As(a) + epA1i(a) + € pdai(a),
(3.9)
%ﬂ = v + e Bio(a) + €2Bx(a) + exBu(a) + epBu + €24 By (a).

Proceeding in an analogous way to that shown in Sec. 2, we find the sequence of recur-
rence linear equations given in Appendix D. The solution of this set of equations gives
us

_ 1 3. : 1 5. .
Wi = ~ 12805 % 3sin 3w sin ¢ — 285 % sin wz sin 31 — 11555 % sin3m¢ sin 37,
Fa . = 7
To = _‘(D _ Vg) sin € cos 1, £ € 0,1),

Wy = A;sin3résiny + Azsinw€sin3y + Ajsin3nsin3p+
+ Agsin3r€ cosyp + Assin € cos 3y + Agsin3n cos3y,

1 a3 a3 a3
Ay = 50,2 {_1280 Asinm€ — Asm1r§+ 1280VA}’
3 3
Ay = ——}—{270' Asm?rf———wAs € — SLA},
8u2 128
(3.10) o . 5
A = o2 {"11.‘32:/45“"”E T AT+ 1157, A}’
1 {ad
A4 = o2 m}’
_ 1[5,
A= ga {6—4“ }
_ 1 3 3
As = 73, {1152“‘ }
F FC . =
Tho = {ZVA“}(D—VZ)Z +aV(D_V2)2}sm1r{sm¢+
F - a’F . T
+2uan(D 7y 5 sin € cos P — 12800(D — %) sin 37 sin ¢—
3 _ 3 -
3°F i xEsin3y CF  n3nEsin3y,

~128v(D - 9?) 11520(D - 912)
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(3.10)

[cont.]

Wll = 01

Favr | -+,
M1 = 75— sinw{siny,

(D -v%)
=1 3.2
Alo—"z"d (1—16(1),

1, . =
By = z—yAsmwf,

Ay =0,
_ 11 3, 1 5.9 2 BF . =
B =~ {§ + ot + gaA'si’ i€+ g ysnrt)
_ 3 5.2 % 3BFa®> . <+  3d
Az = _256V4A sin”“ 7€ — 6372(D — 17) sinmé + -———256'/2-1-
3 2
_are € — o (1 ~ 16 ) sinm€ — _CBFa sint€
20D - 1) 2D - v2y? 2D v Y
Y S I S NP PO S L Lo
Bs = 253 {3 MR 7T Skl
BF ., .4 -
~TAD — A T
An =0,
By =0,
BF . T
Ay = —Z—V(-—ﬁ-f-;i-)-(u+ 1)sin 7€,
Bzi = (.

In the calculations we have not taken into account harmonics of order greater than three,
and we have omitted the power of the amplitudes which were greater than three. Let us
consider the stationary state which leads to the following algebraic equation:

(3.11) A + Esz) +epAyn =0.

Because we have limited the calculations to the first power of x4 in our example, we can
use the general discussion given in Appendix D by substituting 2 for @ and considering
further the implicit function (3.11) with regard to a and ¢.

From Eq. (3.11) one obtains

2. BF .z BFw+Op . - 3 , __
(3.12) ¢ uz(D—:ﬂ){D v} (C +2)}sinw€ D= TE-a+1=0.
We have also determined
3BF o iE BF(v +1)* . =
(3.13) BBF/
v %(C +2)- D}sinnE.

- 160D - Vz)z{"
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These results allow us to come to some conclusions important from the point of view of
possible applications.

If v2(C + 2) > D, then in the considered system, a one-frequency periodic solution
does not exist, because W is always greater than 0.

If v3(C 4+ 2) = D, then W > 0, and the curve £(a) is a parabola,

If v(C +2) < D and W # 0, then the curve £(a) is an equilateral hyperbola.

Finally if v2(C + 2) < D and W = 0, we have two intersecting lines.

4. Concluding Remarks

This paper has presented a local analytical method for determining the periodic one-
frequency oscillations in dynamical nonlinear discrete-continuous systems with delay.
This method employed the classical KBM technique (Krylov-Bogolubov-Mitropolski)
and, in a new approach, the solution is sought in the form of certain power series in
terms of two independent perturbation parameters ¢ and . The former is connected
with nonlinearity and the latter with time delay. It is assumed that both parameters are
small, and the amplitude of oscillations is small.

Thanks to this method the problem of analyzing the transient nonstationary states
leading to the steady state has been reduced to the analysis of two first order differential
equations. The first is an equation with separable variables, and its solution after its
introduction into the second enables us to determine how the frequency of the sought
solution changes in time, and the influence of the parameters y and ¢, which appear ex-
plicitly in the solution. A general discussion of the benefits of using the two-perturbation
technique is provided. Such problems, important from the point of view of applica-
tions, are demonstrated. These problems can not be solved by the use of a classical
single-perturbation technique.

In order to demonstrate physical insight, an example from the field of mechanics
is considered. Based on this example, we demonstrated that the presented analytical
approach leads to important results. Most importantly, we can find a set of parameters
for which the one-frequency periodic solution does or does not exist. Additionally, in
the example system we calculated fixed sets of parameters for which the amplitude of
oscillations and the control parameter ¢ form a parabola, an equilateral hyperbola, or
two intersecting lines.

Appendix A

The sequence of recurrent linear differential equations is of the following form:

Vi
£: w%a 105;’2“"”) = L@™){V1o} + 2w BypX1acosp+
+2‘¥’1A10X1 sin 1/) + fe(xa a, ‘ﬂb),

4 a . P
22D = Y Apyala, b~ rn) + Fla, 0

p=0
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EM:

T

TR

where

fe
Fe

282V2ﬂ($ a ﬂ{))

wi 992 = L&™){Va} + 2y By X1a cosp+

+2‘UIANX1 sin d’ + fe’(za a, 1/’)1

P
WIM =) Apyn(a, ¥ — rwr) + Fra(a, );

Y

p=0

2 V“(,%f %) _ L0 (V1) + 2w By Xya cos -+
+22n A Xysing + fln(xia‘! ¥),

| P
i 2D _ S 4 (0, - o) + Fula,

¢

p=0
2% V”é;;‘"/’) L™ (Vio} + 2un Bso X1 cos  +
+2“J1A30X1 sin ¢ + fe’(za a, ¢)1

P
ay%(;, ¥) _ 3" Apyn(a, ¥ — Tpwr) + Fes(a, );

p=0

0%Vys(z a,;b
% 125( 3 ) L(z'“){V;z} + 2w By X1acos Y+
+2(01A12X18m' 'gb + f,“a(:c,a, ‘l,b),

P
2028 %) _ S 4, — yn) + Fopa(a, 9

oY

p=0

0Vau(z, a,
w? zgzz“ ¥) = LE™{Vy1} + 21 By X1a cos +
+2w1A21X1 sin ¢ + ft’p(xa a, 1)[)),

P
wlayzg—:,’w = Z{:Apyn(a,w - Tpwy) + Foay(a, 9);

= f(z,w);
= F(z,w);

9%V, 0%V,
5, 0t E gy Yo ~ 2 Bio—55 31#;0 = wlAng‘;p‘l -

I=1

dA dB .
(Am d 10 Bfoa) X1 COSIl’ -— (ZAwBlo + aﬁAm) X] sin ‘!/);

oF = Oyaoy , .
= -3-;‘/10 + !Zl: -55;!/(10): - Z %a Ano;

=1
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ft,u = 0;
F, = oF
1’1
_ 02 d
fe = 5 );Vm fV + Z ay? Yo ; %y(m): -
0*Vy 0*Vyy 0By Vi
_mleW - (Zwle + Bm) 6¢2 ~ ~da a'ﬂb Ao -
dA1 dVio 0%V Vi
"AIOW Ba " Anoa 3% - 2(w1Axp + AlﬂBlﬂ)a 3%
0*V; dA dA
-A} 3a;0 - { d:oAm + T(:EAZD + ZBzoBma} Xicosy +

+ {2(1429.310 + Ame) +a (%Am + %Am) } Xisin ‘l,b;

w

0*F oF
F; 32Vm o Vm"zazyﬂw Z? 9(20)"’

I=1

0*F 0 0 0 dy
+226 o Vioy(ioy — g;oAzo-— _B%EAIG_ yzoBl —IZE 4% g

ftp’ =4y

Fopr = —€le1 sin 9;

6f e 3f il (’)f ay(u)k
.. =24%y 97 _ _
feu 2{81/ 1+ E_ Dy Y ) :63}1;.- 9y !

% 9*V; ?V;
—2n Buo—575 (%; 2ZwuBu—475 3¢';0 20-’1/1103 3112 -

62‘/10 dAw dAu )
0ady ( da 'ﬁAw —2ByBya ) Xycosy +
dBy

dB .
+ {Z(Aan + AwBu) +a (W@A“ + —E-E-Aio) } Xysin;

—20)1/-111 A!l +

m 2 2 F
Ff’n = Z O°F y(w);alel(g) sin ) + &F Vmalel(f) siny + 22 ’y(u); +
I=1 6 13 V1 61/6
. aV
+2%£ gfl (aBle(.f)smz/:—- A X1(€)cos 1 — 79"11% ) -

oF 33}(11)1 }: 331(11): Z 5’9‘(11):

I=1 0y Yu =1
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Appendix B
_ _Cen(@ = _ben(@
Aso(a) = %o Bio(a) = ona
_ _C(en)l(a) _ 6(52)1(-‘1)
Aufa) = -5 Ba(a) = -52 2,
— _c(gs)l(a) ' _ b(,a)l(a)
= _Cew(a) b (a)
A1(a) on Bii(a) 2w
Cle (@ b1 (a
Ap(a) = _%11() : Buia(a) = (2;;)11(5 ) ,
_ _ Ce2pn(a) _ beaun(a)
A21(a) = 2t ’ le(a) = ___—2:;;;1(1 .
Appendix C
Equation (2.29) is transformed into the form
(C.1) A3e? + 2A%ep + Appu? + 2A%¢e + 2Apu + Ao = 0,
where
! 1 ! 1 ! 1
(C-Z) A21 = iAzl, Am = EAZO, All = 'iAll.

Equation (C.1) presents implicit second-order algebraic functions if A3y, A5, and A;;
are not equal to zero at the same time. The form of the function is determined by the

following expressions:

Asg A"21 A’m
Az A’21
W=det| Ay Ap Ay |, Vo=det| P00 ), S =0+ An,
A%y A} Ao 2 2

(C3)
Wa = ApAo— (An):, Wi = And - (A})?.

By means of shifting the origin of the coordinate system and turning the axis, it is possible
to obtain the following functional forms (expressions W, V, S are the invariants of such
shifts and turns):

1. V>0, AW < 0. Curve (C.1) is the ellipse €¢2/A% + u2/B? = 1.

2. V >0, W = 0. Equation (C.1) can be transformed to ¢2/A2 + u?/B? = 0 and
the solution is point (0,0).

3. V>0, AW > 0. Curve (C.1) is an imaginary ellipse (no real curve exists).

4. V <0, W # 0. Equation (C.1) is the equilateral hyperbola £2/A2 — u2/B? = 1.



294 J. Awrejcewicz

V =0, W # 0. The curve governed by Eq. (C.1) is a parabola u? = 2pe.
V=0 W=0 Wiy <0or Wy > 0. Equation (C.1) presents a pair of parallel
2_ A2
pe—Ac=0.
V=0, W 0, Wi1 > 0or Wy > 0. The solution of Eq.(C.1) are imaginary
parallel lines u2 + A% = 0 (no real curve exists).
9. V=0, W=0, Wiy =0o0r Wy =0. The solution of Eq.(C.1) is a double line
p? = 0.
The coefficients ot‘ Eq. (C.1) are functions of the amplitude a and their values are
determined by the functions f.).

oo

Appendix D

02 Fiad %
23¢2 +P4 86410

= —av sin 7€ sin ¥ + va’ sin’ 7& sin 1 cos? 1 — a A sin & sin 1 cos ¥,

(D.1) £ — 2vBjpacosysinmé — 2vAjpsinyYsinw€ =

23 710
oY?

2
(D.2) ¢&%: 28 W

+ Do = aF'sin 7€ cos 1;

0*Wy
4
a9z P ogt

O*W, W, dA .
'Wzm' - ZVAIDW:LQ - (Amﬁm - Bfoa) cos P sin T+

+ (2.410310 + adBwAm) sin ¢Sil] ﬂ‘f + Ay OOS‘!ZJSil'! TFE-—

da
—aBjpsinysinTé + va;:;:o — Ajoa ooszi,{)sm ml+

— 2vByacosyPsinTé —2v Ay sinyPsinTé =

= -—2!1.310

+2a2Wmusin¢cosv,bsin €+ a?’Bmsimbcoszd)sin m€—
awmva2 cos? 1 sin®> 7€ — AWy + Bé8(€ — E)mo,

~ 5%
,29°m0
0P
O*W- NW.
29 V30 4V ¥YV30
0z +p 96
- = - (%GEAIO"" iA_lEAm—ZﬂB;oBm)OOS¢SinT£+

da
dByo dBy

+ {ZAmBm + 2A10320 +a (-Ea—Am + E;——Am) } sin ¢sin ‘ﬂ‘f—

i i
ZvAmg 5y ~ 2B 63‘2" -C 3"’1})“ + FWi;

+ Dy =

(D3) & — 2uByacosysin T€ — 2vAsin Y sinwé =
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OWio dA
(vAxn + A10Bio) — Ao aam daw_

OWyo dBio oA *Wy
¢ da 09¢0y ~

(D.3) _ 4 Wi 3 Wio
[cont.] 10°542 3 oY
TToyT
oW} . .

—2uBmW + AxcospsinTé — aBaysinysinmé+
oWio awm 3W20

“O0a Bw ¢
—a?Aycos® Ysin® 7€ + Wivasin ¥ sin €+

(Bl + 2vBxy) — Awo——

+ A + B - ZaAmWwOOSZ‘KbSinz 1l'£—

+2va®Wg sin 9 cos 1 sin? 7€ + 2a2 ByoWig sin 4 cos ¥ sin® 7€ +

+a3 By sin 1 cos® 1 sin3 1€ — azAlo% cos® ¢ sin® 7€ —

10 cos 4 sin € — a""li’m?m2 cos? Psin® T€ —

oY oY

azuf’;"; cos? sin? 7€ — AWo + Brod(€ — B,

-2v an oW

2 2
v? %:2320 + D3 = —244%033::;0 — g gﬁ(VAm + A10B10)—

dAio Omo _ o
da Oa oy?

dByy a'ho 32 32
da aw -2 Aloa 6‘{1) 2VB10 61!)2

—-CAm-aan% - CB]Q%LJ:] -Cv 637:20 + FWayy;

—Ayo (2vBy + Bl)-

—Aw——

2
V2 3(‘1():;2’:1 +pt 346‘2’:30 —2vBsacosysinTé —2v Ay sinsin Tl =
oWu

= Ajcosysinmé — aBysinysinwé + v—7— 6¢

(D.4) &

—a?Ay; cos® Ysin® 7€ + 2va* Wy sin ¥ cos ¥ sin® TE+

+ a3 By sin 9 cos? ¥ sin® 7€ — vaz%l—l cos? sin® T€—

— AWy + Bru(€ — ) — Bub(€ - o"”’;

2%3'221 + Dy = -Cv %’3’ + FWy — FAygcospsinmé+
oWy .

+aF Bysinysinné — Fv——— 20
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2IWu | (0 Wu _

(D.5) EQ: 597 p o6 0,
2 |
Vz%z-l-zl + Dmyy = avFsinsin €.
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