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ANALYTICAL AND NUMERICAL STUDY OF NONLINEAR
BEHAVIOUR OF THE ELECTROMECHANICAL SYSTEM

J. AWREJCEWICZ (LODZ)

The nonlinear behaviour of a generator with an amplifier (modelled by a simple oscillator) supplying a
current to the string embedded in the electromagnetic field is analyzed. The dynamics of this system is governed
by a set of ordinary and partial differential equations and integral equations with a time delay. The method of
averaging proposed and the symbolic computations applied lead to the set of four averaged amplitude ordinary
differential equations; The numerical analysis reveals interesting nonlinear phenomena.

1. Introduction

In this paper attention is focussed on the derivation of a set of differential nonlinear
averaged equations and their numerical analysis. An electromechanical system serves as
an example of application of the numerical method proposed. A key part of this model
(details are given in the next section) consists of a string, at the ends of which stresses are
generated due to the electromagnetic induction. Oscillations of the string are governed by
the nonlinear partial differential equation, and the excitation is generated by an amplifier.
The theoretical approach is based on the reduction of the original set of equations to
a system of ordinary averaged equations (called sometimes envelope or amplitude equa-
tions), which is simpler and more suitable for the numerical analysis. Furthermore, this
new system of equations allows for discovering the nonlinear phenomena which are very
difficult to observe in the analysis of the original set of equations.

A motivation of the presented approach lies in the recently increasing attention paid
to the analysis of the averaged equations. Observations of the structures formed in a layer
of conducting fluid in the presence of a horizontal magnetic field during the Rayleigh—
Bernard convection prove the existence of periodic, quasi-periodic and even chaotic orbits
[1-7]. These results have been found as a result of a computer study of the ,,truncated”
system using the appropriate scaling and averaging technique. It is expected that in the
present system of averaged equations dynamical behaviour can be also observed.

At the beginning of this paper the averaging method is outlined and the averaged
equations are derived. They consist of two first order amplitude equations and two phase
equations of the first order. This set is then transformed to the set of four first order
amplitude differential equations, which yields (contrary to the first one) the information
on the stability of the fixed points determined. The averaging procedure is supported by
the symbolic computation (here the,,Mathematica” package has been used). It indicates
the importance of application of the symbolic computation to the averaging techniques
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in general and, in particular, to the system governed by ordinary and partial nonlinear
differential equations. In the latter case, direct derivation of the averaged equations leads
to arduous calculations.

In the numerical analysis of the set of equations obtained attention is paid to the
computer study of the transient and steady-state oscillations. In the case of a conservative
system the analysis is based on the solution of the initial value problem. In the case of a
dissipative system, the boundary value problem has been solved.

2. Governing Equations

The detailed discussion of the model and the process of deriving the governing equa-
tions is given in [8]. This model consists of a distributed mass system (a stretched string),
its transversal oscillations being governed by partial differential equations. The amplifier
supplies the current to the string, which is embedded in a magnetic field. The amplifier is
modelled by a simple linear oscillator with damping ¢ and frequency vk. The amplitude
of the current undergoes controlled changes due to the amplifier with a time delay. The
electromagnetic induction B(z) acting along the string generates stresses at the ends of
the string according to the equation

3u(t ) dz

@.1) E(t) = f B(z)

where z is the spatial coordinate, ¢ denotes time, u(t, r) is the amplitude of oscillations
of the string at point (¢,z) and [ is the length of the string. The generated stresses are
responsible for the force excitation

(2.2) Y(t) = ME(t) - h (),

where h;, h, are constant coefficients. Dynamics of the amplifier is governed by the
equation

(2.3) T(t) + 20N (@) + kI(t) = Y(t — p),

where a dot denotes differentiation with respect to ¢, A is the damping coefficient, and
u is the time delay. The changes of time in I(¢) and the changes of z in B(z) produce
oscillations of the string according to the equation

2.4) 621;(:2 ) . 621(;2:2 z) _ 3(2’1 6ug,t ) Bz )I(t))

where hy, ¢ are constants, and ¢ is a small positive parameter. The frequencies of free
oscillations of the string are w, = ITcs/l and the homogeneous boundary conditions are

(2.5) u(t,0) = u(t,1) = 0.

3. Averaging Equations
For ¢ = 0 the solution to Eq. (2.4) is given by

;) + a3 cos(3wyt + 03) sin (3?-:;) y

where a;, a3 are the amplitudes, and 6;, 63 — the phases.

3.1) uy = ay cos(wyt + 61)sin (w
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For sufficiently small ¢ # 0 the solution to Eq. (2.4) is expected to be of the form
(3.2) u = uy + euy(z, a1, a3, 61,603) + h.o.t.

h.o.t. denoting higher order terms.
Supposing that B(z) is a symmetric function, i.e. B(z) = B(1 — z), we assume

(3.3) B = Bysin({Tz /1) + Bssin(3l1z/!).

For small u the }ight-hand side of Eq. (2.3) can be approximated by (dY/dt)(1 — u). A
solution to the linear equation (2.3) has the form

(34) I()(t) = Mjcoswit + Nysinwit + M3 cos3wit + N3sin3wit + h.h.,

where M,, Ny, M3, N3 are given below, and h.h. denotes higher harmonics, which are
not taken into account. The amplitudes are

(3.5) M; = (mib; + nyc;)/dy, Ny = (—nib; + myc;)/d3, i=13,
where

my = w% —k,

ny = 2Awy,

m3 = 9wf -k,

n3 = 6wy,

di = —(k — w?)? — 4)%?,

ds = —(k — 9w?)? — 36027,

(3.6)
2 2 2 3 .4
by =(1- pwl){ ( - Blal;ﬁwl + 273183?6“3h21 w‘) cos 0y +
3.3 3 .4 3 2.2 2,2
+————_—331a:‘£2" “1 cos? 93} + -———-——B'a‘;"w‘ (—- hy + 2733“?;12" w‘) sin 6, +
33%0?11213#1.0{ 2 . 93%330%63’12‘3#&)? .
+
+ ™ cos“#, sinf; + Y sin 26, cos 63
3.3 13 4 2 P 3 .4
+%(1 — puwy) sin6y cos by + 33“13“23”2" “1(9 — 63uw;) sin® f; cos B3+
3.3 3 5 2 2 3 5
33101;1223 poy o3 6, — 9313301;23,h21 Py o2 0y sin 63—
2 2 3 .4 2 2 3,45
_oBiBsaiashalui g,y sin26, sing, + 2P1D309MLN Go g Ging,

32 32
c1 = —%Blaﬂ,uw? (h1 - %B%a%hzfzw%) cosfy + %B%ai’hzf:’,&wf cos> 01—
- %Bfﬁg a?a3hyl? pws3 cos? 0y cos B3+
1 2 27 2 27 43, 4 :
+-2—(1 - pw1) Blalhllw, - —-8—B1B3ala3hzl wyq sin 6, —

-
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3
BiathyPwi(1 — pw;)sin 6, cos? 6, — 9B} B3afazhyPwi(l — Tpwr )+

(3.6) -5

[cont.]

3
+35 Bj a3 hylP w3 cos 6y + 3B Byataszhal® pw? cos 63) sin? 6; —
3
32 th (1 - wl) + 2 Bl B3ala3h2l3w (1 - 7;1.(..01)0052 01 sin 33-—

9
33 —=Bj B3ala3h2!3w1p sin 26, sin 03 — %Bl B3ala3h213w‘11(1 — 7;1&)1)81!‘1 01 sinfs3,

by = —%33 ThalPwi(1 — pw) cos® 6; +
9 2 27 2 2 3
+(1 - 3“(&'1) - '2—83(13}111{.01 + 1—6.81 .83(]1(13}12{ C0363+
243

+?2~— 3(1;}12!3 (1 - 3;.1,:..1.!1)005 0s + 253 thwf cos? 01 sin 6, +

32

Blalthwl(l - pwl)COS 91 Sl]'l 91 + —28 a hzlﬁpw Sll‘13 91-—
% 3271 !

—2—;B3agh11pw% (I - %#wl) sinf3 +
243
32

73229 B;’aghzl3ﬂwl cos? 63 sin 03—
729

——B3a3hyPPwi(1 - 3pw;) cos 3 sin® 65 + I

—B a§h2!3pwl sin’ 03,

2
c3 = -% lalhzfz’pwl cos> f; — —;B3a3h I,uwl (1 - g“"‘) cos 3+

73229 B3aihy P pw3 cos® 03 + 392 Bia3hyPPwi(1 — pwy)sin 6y cos? 6y +
+§;B3a3hzlzpwl cos 0y sin’ 6, — 3—32-33 ThaBwi(l — pwr) sin® 6, +

+% (B3a3h1:w§ - 28_731233a%a3h2£3w;‘) (1 = 3pw;) sin B3—

—%B a3halPwi(1 — 3uw;) cos? 03 sin 63 + %Bga3h2!3ﬂwl cos 63 sin’ f3—

243
32

Further procedure is typical for the perturbation technique and its details can be found
e.g. in [9-16]. Since B(z) and I(t) are defined, Equation (2.4) can be solved using
the classical perturbation approach (it is assumed that u1(z, ai, az, 61,63) is a bounded
and periodic function). Substituting Eq. (3.2) into Eq. (2.4) and taking into account
that a; = a;(t) and 6; = 6;(t) (: = 1,3), the following averaged equations are ob-
tained

= Bia3hyPwi(l — pwy)sin® 65 .

a!a1

= ePi(ay, a3,1n),
D1 eQiar,as,m)
dt 1,Q23,7).

The right-hand side of Eq.” (2.4) (denoted by R) is used to determine the following
resonance terms
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i

2 & Miz B;
Ric = i f f Rsin —— cos Yiodpi = ?‘(Ms cosf; — N;siné;),
0 0
(3.8) 121
2 . Iz B; .
Ri, = m f f R sin _;_13 sm ’qb,'(;d‘g[)m = ?(N‘ COs 19,' + M,‘ sin 9,) y

0 0
d)i0=i{-‘-’l+9i; 1= 1:31
where R., R, correspond to the terms multiplying cos ¥y and sin ¢;¢, respectively. Com-
parison of these terms generated by the left-hand side of Eq. (2.4) with those defined by
Eq. (3.8) leads to the following formulae
(3.9) P = _ 1 Bi( cos_ sin ,
2 1owq
1 B,'(M,‘ COS 9,‘ - N,‘ Si]’ll?,‘)
Qi = ) ; .
10a;Ww

It can be seen from Eq. (3.7) that we are dealing with one variable 7 instead of two
variables 6, and 63. This is the key point of the averaging procedure presented here.
Variable 7 results from the relation

(3.10) n=6z— 30,
and the averaging procedure is applied to Eq. (3.7) in a special manner, e.g. fori = 1

we take 63 = n + 30, whereas for i = 3 we take 6; = (1/3)(03 — n). The final form of
the averaged terms appearing in Eq. (3.7) is obtained,

1 3 27
Q1 = ==+ | B?hylwy — = BjalhylPwi — =B} B2alhylPw3 | (mi(1 — pwy) + pngwy)+
2dp 16 8

9 .
+ EB?Bmlag,hzl:swf((ml(l - Tpwy) + ,umwl] cosn — (m(l - 7pw1) - p.mlwI)sm 1}')} ,

1 9 81
Q3 = m{ (33%1@1 - gBlzB:iza%hZ'ﬂw?_ T3

T Bgagthuf) (ma(1-3pw;) +3unsw, )+

1 .
* T6as B3 Bsa3hyl2w3((m3(1 — pwr) + 3pnawi) cosn + (n3(1 — pwr) — 3umaw;) sin TI)} ,

(3.11)
(I]h.(} 1 3
27
+§B,28§a1a§h213wf) (n1(1 = pwy) — pmywy)—
9 .
_EBfBg.a%mhzfswf((m(l — Tuwr) — pmywi) cos n + (my(1 — Tpwy) + pnywi) sin n)} ,
ash 1 9
Py = __39 0+ v { ( — 3B3aszhylwy + §B$B§a$a3h213wi+
+ %B%ihﬂ%i) (n3(1 = 3pwy) — 3umaw,)+

1 g :
+ EB%Bm%hgpwf((mg,(l — pwi) + 3pnzwy) sinng — (n3(1 — pwy) — 3pmaw;) cos n)} .
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The first attempt to derive the averaged set of equations was made by RUBANIK [17].
However, we have applied here a different method of averaging, and we have found some
numerical errors in the set of equations presented in [17].

The analyzed set of equations has some properties which make the numerical analysis
very difficult. First of all it is a stiff set of equations (a3 appears in the denominator of
Qs in Eq. (3.11)). As it is assumed in the averaging procedure, amplitudes a; and 6;
change with time very slowly, and a long integration is required to trace the behaviour of
the system. l

Furthermore, the obtained set of equations does not allow for the determination of
stability of the fixed points of Eq. (3.7). In order to emit these difficulties we assume

(B12) uw=M coswit + Ys sin wot) sin (,,f;_) + (Y3 coswst + Yasinwst) sin (311-?) .
Comparison with Eq. (3.1) yields the following relations:
Y1(t) = ai(t) cosby(t),
Y2(t) = —ai(t)sinby(t),
Y3(t) = a3(t) cosbs(t),
Ya(t) = —as(t)sinf3(2).
In what follows, the set of the amplitude differential equations has the form
Y1 = ay(t) cosdy(t) — ay(t)d:(t) sin by (t),
Y2 = —ay(t)sin 01(t) — a1(t)01(t) cosbi(t),
Y3 = a3(t) cos83(t) — a3(t)f3(t) sin 83(t),
Y4 = —a3(t) sin03(t) — a3(t)d3(t) cosbs(2),
where a; and 6; are given by Eq. (3.7), and
6, = arctg(—Y2/11),
63 = arctg(—Ys/Y3),

(3.13)

(3.14)

(3.15)

4. Numerical Calculations and Results

As it has been already mentioned, the averaged equations (3.14) are stiff. For this
reason the backward differentiation formula up to the fifth order (called Gear’s method)
is used to simplify the solution.

Let us begin with the numerical values of the following parameters: [ = 0.1, w = 1.7,
A =001k =25 hy = 001, hp = 0.6, o/e = 1, By = 4.0, B, = 0.2; the damping
coefficient hy = 0.0. The time delay u is used as a control parameter. For u = 0.0
the solutions Y; oscillate with very small amplitudes, as shown in Fig. 1. The situation
drastically changes with the increasing time delay (see Fig. 2). Not only the magnitude of
the oscillations of each solutions increases but, in spite of the evident regularity of Y3 2(2),
sudden changes with a very low frequency and large amplitudes of Y3 4(t) are observed.
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FIG. 1. Solutions to the averaged system of equations for x = 0.0.
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Fi6. 4. Time evolution of Y;(t), 1 = 1,4 for By = 15.0.

Such a behaviour may be termed,unexpected”, since the magnitude of the excitation
amplitudes B;, B, suggest a different result. Moreover it is found that by confining
the solution of the averaged amplitude equations to the first harmonic of oscillations,
the results can be made completely incorrect. The observed changes are very slow and
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they vanish quickly after introducing of damping h. This is presented in Fig. 3 for the
following parameters: [ = 0.1, p = 0.1, w = 1.7, A = 0.01, k = 25, hy = 0.1, h; = —0.001,
o/e = 1/hy = 0.002, B; = 4.0, B3 = 0.2. In this case the oscillations of Y3 4(¢) vanish very
quickly, whereas the transient damped oscillations of Y3 4(t) approach zero much more
slowly.

With an increase of the amplitude B; (the other parameters are the same as in the
first example) the oscillations Y; 7 also increase, whereas Y3 4 exhibit monotonic increase
and decrease, respectively, accompanied by small high frequency oscillations. This is
illustrated in Fig. 4 for B; = 15.0.

Let us now proceed with observation of the periodic orbit. To this end consider an
approximate position of the fixed point Yf,k ) (close to the unknown exact one) and perform
the numerical integration over the estimated period 7). Actually we have rescalled the
equations according to the rule 7 = £2¢, where 2 serves as an unknown to be determined
and the period is equal to 2x. The error E = Yf,k ) G((,k) (where G[(,k) = G(Y{)) is a
point mapping) shows the accuracy of calculations. Then, after a perturbation of the fixed
point, its stability is determined. Further details of this approach can be found in [18-20].
The results of calculation of the fixed points as functions of By for I = 0.1, p = 0.1,
w=29 =001k =90,k =0.05, h = 001, o/ = 1.0, hy = 0.02, B3 = 0.8 are
presented in Fig. 5. In this Figure Y3 and Y4 are much smaller than Y; (Y2 is assumed to
be zero). Variation of the period following the change of B is evident (see Fig. 5b, where
Z = 1/$2). The observed periodic orbit is ,,strongly” stable, i.e. the multipliers are lying
close to the origin. As an example, one of the periodic orbits is presented in Fig. 6. It
is seen that one revolution of variables Y; ; corresponds to two revolutions of Y3 4 during
the period 2. '

5. Summary and Conclusions

The results and methods presented in this paper can be reduced to the following three
stages.

1. The averaging procedure is proposed to study the original set of partial, integral
and ordinary equations governing the dynamics of the electromechanical system.

2. Applications of the symbolic computation to the derivation of the averaged equa-
tions is successfully performed indicating the advantage of the application of symbolic
computations in the averaging procedures.

3. Numerical study based on both the initial and boundary value problems is carried
out showing the interesting nonlinear phenomena. In the case of absence of damping
(ho = 0.0), in spite of the evidens regularity in Y; 2(t), sudden changes of Y3 4(¢) with the
very low frequency and large amplitudes are found. Growth of the amplitude B; causes
the increase of the magnitude of oscillations Y 2(t) and the respective monotonic increase
and decrease of Y3(t) and Yj(t) with considerably damped oscillations.

A periodic orbit in the averaged system of equations has been also found and analyzed
on the basis of the solution of the boundary value problem. An interesting observation is
that one revolution of ¥; »() corresponds to two revolutions of Y3 4(t). Also the period
varies with the change of the control parameter B;. It means that in the original system
periodic and quasi-periodic oscillations of u(z,t) are possible (see Egs. (3.1) and (3.2)).
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