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The paper is focused on the original approximate method for
solving the equations of motion in the synchronization conditions,
where the amplitudes are constant in time and the ratio of
vibration frequencies is a rational number. The analyzed
equations govern the dynamics of self—excited two degrees of
Jfreedom mechanical system with friction.

1. Introduction

The aim of this work is to present an analytical approximate method to
formulate the averaged equations, which govern the dynamics of the two degrees
of freedom system. There is a very wide literature connected with the averaging
methods. Our attention is focused on the developing a method for an analysis of
multifrequency vibration and the paper is based on such references as [1—5].
This approach consists of the following steps. First, an example of self —excited
mechanical system, where friction is responsible for the occurrence of
vibrations, is introduced. Then, after applying the normal coordinates
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the method is demonstrated, which leads to the averaged equations.
Stationary and unstationary solutions are discussed.

'2. Model System and Equations of Motion

Fig. 1 presents the diagram of the analyzed system. At certain parameter
values of the system, it is possible to abserve undying self —excited
vibrations due to friction between a body with the mass m, and the belt.

‘Fig. 1. The analyzed self —excited system with two degrees of freedom

The equations of motion have the form:
m,X, + (k; + kp)x; — kpy, =0,
m,¥, + k,y, — kx; = m,g(u,sgnw — aw + fwd), 4))

where: w=v, —y, — relative velocity of bodies under friction;
Uy, @, B — coefficients used to circumscribe the friction coefficient
by means of polynomials;
m,, m, — masses of rigid bodies;
k,, k, — elastic constants of flexible elements.
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3. Approximate Method

The equation system (1) can be presented in the matrix notation:

Mg + Kq = Q(9) )
where: M — matrix of the system inertia,
K — matrix of the system rigidity,
q — vector of the generalized coordinates,
Q(d) — nonlinear exciting force.

The relation between the generalized coordinates q and the normal coordinates
¢ is expressed by the relation

q=Y¢ 3

where: — matrix of eigenvectors.
Having introduced (3) into (4) we get

MY¥¢ + KYE = QYE Y. | )
Both sides of (4) are multiplied on the left side by the matrix ¥7, and we get:
YTMYE + YTKWYE = WTQ(YE, Wé). (5)
Let us denote
P = YTMVY, U = Y7KY¥Y = PA. (6)
Accounting for (6) in (5), we get
P¢ + PA¢ = WTQ(¥E, ¥é) )
From(7) we get:
£+ A = PTQ(¥E, YéP! @®)

where:

A, =.PAP"1 = diag[w?, ... v?] 9)
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o=} =[}]
Y=o Tyl

where:
fly) = m,g [,58n(v, — y) — a(v, — ¥) + B(v, — ¥)’]. (10)
We have also assumed
. . \Pgn \P(IZ) (1 1)
=l e

On account of the asymmetry of the nonlinear characteristic, the solutions are
sought in the form:
§1 = &10 + &F = &10 — Aylt)cos 1y,

(12)
€, = &0 + &5 = &30 — Ay(t)cos 1,

while:
T, = ot + ¥, (1),

(13)
T, = ot + Wy(t).

The left sides of (9), after introducing (12) and omitting small quantities of the
second order, are

& + 0P, = 2A(0wgsint; + 2A(H)w,¥ cost; +
+ wé, i=1,2 (14)
After accounting for (10), (11), (12) in (3) we obtain
x = ¥ + ¥, + YT + PO,
y = Yo + Y0 + WP + YOS 15)

y = YA (O),sint, — YDA (H)cost, +

— WA (t)i,sint, + PPDA,(t)cost,.
2 “*2 2 2 2 “*2 2
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After such a procedure we have found equations (8) which are coupled only
because of the nonlinear terms. The left sides of these equations are substituted
by (15) and contain A(t) and W (t) (i = 1,2), i.e. the slow change of the
amplitudes and phases. The nonlinear function f depends on two independent
variables 7, and 7, and it is periodic because of each variable. Thus, it can be
expanded into a double Fourier series:

f sinlt, + ) f} sinkt, + Z ff coslt, +
k=1

-+
EMs

a a
ff coskt, + ), ) (f;coske coslt, + f*coskr,sinlt, +
k=1 1=1

+
el

+ fisinkt,coslt, + fjsinkz,sinlt,) (16)

where:

2x 2x

1
2x 2x

2x
0‘ 2_1_ J. fSiﬂsz dtl d‘[z’ ff = LZ J. fsin le dTl de
o o

o

x 2x
1
=273 J. J. fecoslt,dr,dr,, ff = 2 '[ J. fcos kt,dz,dr,,
[ o

2z 2x
£ iz J‘ J. fcoskt,coslt,dt,dt,, 17)

|

3
Il
Nl =

2x 2«
J‘ .[ fcoskz,sinlt,dz dz,,
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2x 2x

£y = ;12- J- J.fsinktlsinl‘rzdtldtz,
o o

2x 2x

% J. stinktlmslrzdtldtz.

B

Let us assume that between the frequencies the following relationship exists
_bp
wz -— aﬂ)l + Q. (18)

where: p,q — the smallest natural numbers describing the frequency relations,
Q — frequency deviation.

Such an assumption indicates that for Q =0, w, and @, are in the (p,q)

resonance.

Let the following be true

T, = =14 + (), (19)

Qoo

where: ¢(t) — generalized phase difference.
After accounting for (13) in (19) we get

o) = @t + ¥, — Clagt + ¥,0] (20)
When differentiating (20) against time and 'accountihg for (18) we obtain

-¢=n+li'2--2'ifl. 1)

After taking into account the formulae in (17) given below
2coskt,coskt, = cos(kt, + It,) + coskr, — lt,),

2coskz,sinlt, = sin(kt, + It,) + sin(lr, — krt,), (22)
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2sinkz,coslt, = sin(kt, + Ir,) + sin(kt, — l,),
2sinkz,sinlt, = cos(kt, — lIr,) — cos(kr; + Ir,),
we have

-] PO -]
f=1f,+ ) fusinlt, + ) £ sint, + ) £ coskr, +
k=1 =1

=1

% E i{i‘,;‘,[cos('k:r1 + It,) + cos(kr, — It,)] +
k=1 i=1
+f£ [sin(kt, + lt;) + sin(lr, — kr,)] + §[sin(kr, + It;) +

+ sin(kr, — It,)} + ffj[cos(kty — Ity) — coskkty + Ity)] } (23)

k 1
Having taken (19) into consideration and assumed n = 0 s= 4 and introducing

all this into (23), we take the terms with 7, from the possible combinations, and we
have

. 1
fr, = t’l oSinty + i‘l ocosq + ig {ﬁ‘_”mcos(ﬁ + nqe) +

+ £ cos(t; — nqe) + 7

1+np,ng

—mpngSin(Ty + NqQ) +
+ 17 pngSin(ty + 0qo) + 7 sin(ry + nqo) +

+ £ sin(t; — nqp) + f7 np. l“!cos('rl — nqe)*+

np,nq
- f’l’“..,.nqcos(rl + nqqo)}. (24)

The expression (24), after transformation, will have the form
fr, = Prsint, + f'r,cost,, (25)

where:

1

Fr, = f, + 5“ { —p. “smnqcp + € +,,.n¢5i“nq‘f’ + (26)
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+ cosnqp + f° cosnqp + f¥

1-nping 1+nping cosnqo +

—np.nq

+ ¥ apacosnae + f7, - sinnqe + fF sinnqo},

1+np,n —np.,nq

. l c c
e, = fio + 3 Z{ﬁ _apaoSNa® + Y, cosnqe + @7)

+f sinnqep + f

1-—np,nq —np.,nq

sinnqo +

— £ +npagSinnqe + f’l’ﬂp_mcoan(p — f‘l'_nchoanqo}.
From(9) we get

q q '
T, =1, — = Q. (28)
1 pz p‘P

Analogously to the procedure with (23), after accounting for (28), the terms with
1, are separated, and the following is obtained:

np,1—ng

1
fr, = fj,sint, + f{j,cost, + —2—2 {f“' cos(t, — nqe) +

+ £ _,cos(t, — nqe) + £

np.ng e 1-aSi0(T2 — nq9) + £ sin(z, + nqg)

+ f* 1_mlsin(-rz — nqp) + f* sin(t, — nqe) +

np, npng—1
+1 -1608(t; — nqp) — 7 cos(z, — nqtp)}. (29)

The expression (29), after transformation, will adopt the form:
fr, = fr,sint, + f'r,cost, (30)

where:

1 . .
fr, =1 + 5? {f:‘p'l_nqsmnqcp + ff';m_ ,Sinnqo +
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+ f:;.l —ngCOSDAQ + f:‘:,'l +nCOSRQQ + f:’ 11— SOSNAQ +
+ £ -icosnqe + 7 sinnqp — £ .l_nsinnq(p}, (31)

np,ng—1

1
ffr, =5 + E‘é {f:: 1-nCOSNqQ + fre cosnqp +

— f*  sinnqp + f:; sinnqyp — £° sinnqep +

np,1 —ng .1+ng np,1—nq
- f:PM-' ISinnq(p + f:;.nq- 1c0snqe = f:’p.l _nchSllq(P}- (32)

Roughly speaking, the connections applied above have supplied all terms with
sin 7;and cos 7; (i = 1, 2) which of course have important meaning for the results

obtained finally.

Having equated the right sides of (8) and (14), and accounted for the terms found
at sint,, cost, and the absolute term, we obtain the following differential
equations system:

wiz éio = pi‘Pg)foos
2A,(Vw; = p; ¥, (33)
2A (D@ ft) = p¥Pfr, i=1,2
Theoretically, from the second equations of (33) we can obtain A; and then from
the third one, ¢,(t).
However, the analytical solutions of such equations exist only in very rare cases.
In the case when the steady state is analysed, ie. after assuming A(t) =

= ¢(t) = 0, the equations are simplified and after accounting for (21) the
following is obtained:

w?ffo = pi‘Pg)foos (34)
fir;, = 0,

(1)
q 4 PV, PRI
2A,m0, q 2Am,
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After calculating the derivative of (20) and accounting for ¢ = 0, we obtain the
following:

w, + ¥, =g (@, + ¥,). (35)

Assuming that 0} = ¥, + o,, v, = ¥, + 0, and taking this into account in
(35), we have

(36)

§.
~
Il
Noliho!
&,
[y

The equations (34) govern the synchronization state, where the viabration
amplitudes are constant in time, and the derivatives of ¥, do not change in time,
either, and they are such corrections of the free vibrations frequency of the
conservative system that the relationship (36) is fulfilled, i.e. the resonance of the
(p,q) order appears. The frequency corrections are determined from the relations

ZAlw;'f’; = png)FTl,i - 1, 2. (37)

The motion obtained is a periodic one. The non—zero expressions fr; are
obtained as a result of averaging the noncontinuous function sgn B8v,
— YPw, A sinty — ¥Pw,A,sint,/ from the formulae of (17), when

v, < YA 0 sint; + YPA,0,1,. (38)

In the asynchronic state, when the corrections of ‘I", = 0 (fori = 1, 2), the
vibration frequencies of the weakly nonlinear system overlap the free vibration
frequencies of the conservative system.

When solving the algebraic nonlinear equations system (34), we find the
sought values of amplitudes A,, the values of aperiodic deflections £;,, and the
corrections concerning the free vibrations frequency in steady state in synchronic
state.

3. Conclusion

This paper presents the analytical approximate approach for finding the
periodic and quasiperiodic solutions of the analyzed system. The considerations
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are limited only to the first harmonics of t, and 7, and a special Fourier double
series is used to find all these harmonics. Equations leading to the stationary and
nonstationary states are formulated and some implications for the self —excited
system with two degrees of freedom are discussed.
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Analiza drgan samowzbudnych wywolanych
tarciem w ukladzie o dwach stopniach swobody

Streszczenie

Celem pracy jest prezentacja analitycznej metody przyblizonej prowadzacej
do sformutowania u$rednionych réwnan roézniczkowych nieliniowych pierw-
szego rzedu. Metodyka postgpowania zostala przedstawiona na przykladzie
drgan samowzbudnych wywolanych tarciem w ukladzie o dwoch stopniach
swobody.

Rozpatrzono dwa przypadki, gdy czestosci drgan wlasnych o, i w, sa
w rezonansie rze¢du (p,q) oraz gdy drgania odbywaja si¢ z dala od rezonansu.
Najpierw wprowadzone zostaly wspoirzedne normalne, dzigki ktorym lewe
strony rownan rézniczkowych opisujacych dynamike¢ ukladu zostaly rozprzeg-
nicte. Nastepnie uzycie podwojnego szeregu Fouriera i zwiazkéw trygonomet-
rycznych (22) pozwolilo na znalezienie wszystkich wyrazéow z pierwszymi
harmonicznymi sin t;, cost; i = 1, 2). Metoda pozwala na analiz¢ stanow
stacjonarnych i niestacjonarnych w analizowanym ukladzie.



34 Jan Awrejcewicz

W oparciu o zmodyfikowana przyblizona metode analityczng wyznaczono
amplitudy drgan A;, wartosci uchybéw aperiodycznych ¢;, oraz poprawki na
czgstos¢ drgan w rezimie synchronicznym. W tym ostatnim przypadku praw-

dziwy jest zwiazek @) = g o}, gdzie piq sa liczbami calkowitymi , oraz ) = w,
+ ¥, 05 =0, + ¥, (¥, i ¥, sa wspomnianymi poprawkami).
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Katedra Automatyki i Dynamiki Maszyn



