Journal of Sound and Vibration (1993) 160(3), 566-573

PERIODIC OSCILLATIONS AND TWO-PARAMETER UNFOLDINGS IN
NON-LINEAR DISCRETE-CONTINUOUS SYSTEMS WITH DELAY

J. Awrescewiczt

Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba,
Meguro-ku, Tokyo 153, Japan

AND

T. SoMEYA
Musashi Institute of Technology, Department of Mechanical Engineering, 1-28-1 Tamazutsumi,
Setagaya-ku, Tokyo 158, Japan

(Received 20 March 1992)

1. INTRODUCTION

In this letter we discuss the importance of understanding two parameter unfoldings in
systems governed by non-linear partial and ordinary equations. The approach is a continu-
ation of some earlier works, in which the two-variable asymptotic expansion technique has
been used to analyze periodic oscillations in non-linear parametrically excited mechanical
systems [1-3], and bifurcated oscillations [4] as well as oscillations in discrete—continuous
systems. The approach used here has been developed from that of reference [5], in which
the periodic oscillations were sought in the form of power series of two independent
perturbation parameters. The recurrent set of linear differential equations obtained by
means of comparing the expressions found at the same powers of two perturbation param-
eters were then solved by using the harmonic balance method. The technique presented is
a generalization of classical asymptotic methods, which have been widely treated in the
literature, to the analysis of two-parameter unfoldings of discrete-continuous mechanical
systems governed by partial and ordinary non-linear equations with two independent
parameters.

The oscillations of non-linear continuous mechanical systems monitored by. control
(discrete) systems with time delay can be governed by the system of equations under our
consideration. Automatic control of furnace heating or some devices of inertial navigation
such as string generators and accelerometers can serve as examples of such mixed devices.
The most characteristic feature of the above mentioned systems is that the control unit
can influence the control system in particular points and the influence is performed with
time delay.

2. METHOD
We analyze the system
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where (¢, x) satisfies the homogeneous boundary conditions
L& o(t, x)}ees=0,  h=1,...,m. )

(The problem including non-homogeneous boundary conditions can be reduced to one of
homogeneous boundary conditions.) The co-ordinate ¢ denotes time and teR; x is the
vector of the co-ordinates and xe(G U §), where S is the limiting set of G; v(t, x) is a
certain scalar function determined in the set R x G and L*” are linear operators of order
Jj<2m—1; L?™ is the linear differential operator of order 2m on x; y and F are vectors
of an m-dimensional space; A, are constant matrices of (m x m) order; f, g); and compo-
nents of F are functions of y(t —p), u(t—pu, &), Ee(G U S), while 7, and u are time delays.
Finally, we assume that ¢ and yu are small positive parameters. (A similar system was
considered in reference [6], in which the first order averaging equations were obtained by
using a standard perturbation technique.)
For £¢=0 we obtain the following characteristic equations:

LI{X(x)}+0X(x)=0, LIM)es=0, h=1,...,m, (3)

P
D(p)=det { T A e""’—Ep}- @)
p=0
We shall consider the case when p= *i®w and assume that equations (3) have neither zero
nor niw (neN) roots. Additionally, we shall assume that o,# {(p/q)®}, where p and ¢
are integers. (Here and subsequently, £ denotes the unit matrix.)
The periodic solution is sought in the form

o(t,x)= Y Y &u'Viulx, a(t), y(1)},

k=11=0
) ) K L
y=a{ae*®+ae™}+ ¥ ¥ fulyufaln), v(9)}, (5
k=11=0 .
where
K L K L
da_ Y ¥ &u'du{a(t)}, Elg=¢u+ Y ¥ &u'Buia(d)}. (6)
dt «=1i-o dt k=11=0
a and @ are determined from the equations
P P
. Y. (A,e”*"— Ewi)a =0, Y (A4,e""'+ Ewi)a=0. @)
=0 p=0

The eigenvectors B and B of the adjoint set of equations are obtained from

i (A} 7%+ Eoi) =0, )E (A} e "~ Ewi)f =0, 8)

p=0 =0

where A} are the matrices conjugate to the A, matrices. From the ﬁrst of equations (5)

we have
v X L Vi (da\ OV (dy
5 oo} 2]
ot ggy f§0 # da \dt al}f dt
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52—2=§ f {a V;H(da) o PV Vi dy da ar/,c,(d2 )
k=11=0 ) dt dady dt dt da \dr?

6 VH dl}‘l) 6 Vk; (d ly)}
602 ( dy \dt? ®)

From the first of equations (1) we obtain

-ieeen-f £ eGSR
+%(%)+aazf (‘g)z 66? ((:l w) L(M{V“}} (10)
while from the second we obtain
(:l); ‘:i‘:( YO 4 5 """")+ra(t) 7 (a v — G e"v)
PRl Bt an

From equations (6) it follows that

d’a_ ,, ddw, , (dAm dAn )

—=¢4 + An+—24

dr? 10 da EH d 1l da 10
+33(d£°A.o+d”‘°A20)+0(a“p’;k+t=4), (12)

dad
dr d_‘:= ewAso+ e (@ An+ A10Bio) + epw A + (@ Az + AnBio+ AroBir)

+€#2A12(D+53(A30@+A20310+A10320}+O(5k#’;k+l=4), : (13)
dBm dBIU dBn
=g A + {—A +——A4 }
dl' 10 32 da 11 da 10
+a’{ddB;°A dfmAm}+0(s"p k+1=4), (14)
da z
(5) = &2 A}+ 26’ AroA 1 + 26 AnAro+ O(e'p'; k+1=4), (15)

d
(dt,) =’ +2e0B+2euBno+ & (2w Byo+ Blo) + 2ep* B0

+262u(w By, + By Byo) + 26 (0 By + BxBio) + O(*p'; k+1=4).  (16)
Since y and v can be expressed as power series,
N1 dy(t N1 d"u(t,
yt—m=3 —()( -, o(t-p, &)=Y (- 2)

- - n
"-oﬂ n=0 n! dt

(—n)’, (17)



LETTERS TO THE EDITOR 569

then the functions &f and &F can be expanded in a power series of small parameters u and
€. Further calculations were carried out for n=1 (y,=-—pu(dy/d¢) and 9,=—u(dv/d¢))
and under the assumption that

{6 Vi da BVH dlﬁf}

. K L Ek
h="r L L 2a i oy dt

k=11=0

da .
).’I =—u {a (a elv(f)+ —w(r)) ﬂa(f){ yy l(a e'\"(f) —de -v(r))

— Oy da BYk;dw)}}
g kgl :-Z'o L (30 df dy dt ’ (18)

The necessary derivatives of the functions fand F were calculated at the point 4 =&=0and
20=0, yo({)=a(t){a €+ & e”'*}. The sequence of recurrent linear differential equations
obtained is of the following form:

£: o’ 62V10(x. a, W)/awzzL:(rm){ Vlo} +fe,
3 .
M Z Apyio(a, y — 1,0) — Aro(a ¥ +a e¥) —iaBjo(a e —ae™")
‘3'1’ p=0
P . .
—F oy drela O+ 5 )
r=1
—iaBo(a € " —ae YN +F,; (19)
e: o* & Va(x, a, W)/awz = LS:zm,{ V20} +fee
5)’20(0 V) _

3 Z A,y(a, ¥y — 1,0) — Ap(a ¥ + G e7*) —iafy(a e’ —ae™™)
W p=0

P i *
= X Ap{r,A2(a e Y~ 4 g e YT
p=1

+iaBy(a €Y " —ge 'Y )} + F,,; (20)
Ep: a)z 62Vll(-xs a, W)/a“’z:LJ(tZM){VII} +fsps
ayll P v iy v __ —iy
o —=) Ayyn(a, y—1,0)— An(ae¥+de)—iaB, (ae¥—ae ™)
3'!’ p=0
P N
’ =¥ A {Au(a Y +ae V%)
r=1
—iaB(a &Y~ ") —ga e"""”’"’))} +F,,; (21)
g w? anm(x, a, '}’)/aWz:L?”){ Vi) +fe,
6)’30((1, W) E Apyao(a v— ‘r_,,a)) Am(a ei\'+a e 1!’)—]&330(0 e V-—a e )
dy p=0 -
P - -
— Y TpAp{As(a eY P +ge YT
p=1

+iaBiy(a €Y —ae Y ")} + Fp; (22)
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el a)2 62 Vlz(x, a, W)/aw2=L§;2m){ ij} +f€p2,
31"2;“: P~ E Apyi(a, y —1,0) — Ai(@ ¥ +ae)—iaBi(a e’ —Ge™)
v 5

p . .
— Y A {An(a €Y+ g e ™))

p=1
. ‘*‘lﬂBn(G CI(V rpm)_ae v rm))}+ ep?s (23)
52!“ w? oVal(x, a, W)/3W2=L§M){ Vzl} + £,
d p . . . .
%’yw Z Apyu(a, y—1,0)—An(ae¥+ae)—iaBy(ae¥—ae™)
- Z 7,A,{An(a YT 4 g e IV
r=1
+iaBy(a e " —ae YT + Fa, (24)
Here ‘
f£=f(x,yﬂ)9 F.E:F(x, 'jlsys,]jl)s
52Vm 32V|o of > of
=—-2wB —-2wA +—= + ,
fz‘ 10 aW 10 22 3‘!’ o0 10 izi 3 f)’(m)s
Y10 0yio oF m oF
Fo=——— A g———Bjog—— Vip+ ) — , =0,
a 10 oy 10 30 10 Z 6 f}’(m)f fcp
Fou=— Y BJ}F awi(a ¥ —a e V),
n=1 In
d )
fe —_f Viet szo+ Z fJ’(ioJf+ Z f}’(zo)f
ov 3}’ Vi
an 3V
+2 z a a V]oy(]o);_ZGJB]n (20)320"'.820) 10
Vi
_ 4. 4B 3Vio s ddio 0Vio_, . 0’V
" da oy da Oa " 8a oy
V
—2((0A20+A103m) & Vio _ fo ‘(?2“"‘2'1'9‘,
6a Oa
o 0920 0y20 f m o*F
Fp=-— A A By +*—*V Voo +
e oa 20 oa 0= v Py 6 20 E: 6yf — Yaoy
m *F m oF , m OF m  §F
+ Z 2)’(10)1 Y — Yooyt Y — yaou+2 Z VioYaoy,
=10 =10y 1=1 0y v Oy

m . M A2
for=7Y s do*(a e’ —ae ) Fo2=Y oF

, do’*(ae?—ae ™)
n=1 aﬁu n=1 a).’fn
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a ”m m . . . .
j},ﬁ,,=2lr Vu+2 Y J +2 ) af {—A(ae¥+ae)—aBi(ae¥—ae ")}
ov =10Vant n=100V1n
m 2 . ) ) . m m 2
~9u o —Viawi Y, af. (ae¥—ae)—yoavi(ae¥—dae™) Yy Y 6f-
oy n=1 00 OPin n=11=10Y101n
2 o’V V 84
—Zaija V;|—2w31| ——!22—20)14]0 9 ! _ZGJA“ g d s
oy Oa 0y 0a 0
i) ) ) i)
Fa,=—Aso .th_A“ ym—Bm J"ll_Bll Y10
da Oa Oa oy
m 2
-y g F Vieawi(a €+ a e™*)
n=1 av ay;,,
m m azF . .
-2 2 — yoawi(ae¥+aev)
r-rn-|5YIaym
M OF oF oF avV,
+2 E—y(“);‘f'z—V“"'d‘J—. 1
1=10)1 ov 00, oy

m  AF . . . . 0
2 )y — {—A.o(a e¥+de ) —aBy(ac*+ae™) HE% (o}. (25)

n=10)1n

To achieve a complete ordering of all of the recurrent equations we take the additional
condition that &'~' <y, where i is a positive integer. After expanding the function £+ into
a Fourier series one obtains

J»=Y Y {bsa) cos ny +ceysm(a) sin ny } X (x), (26)
s=1n=1
where
1 rl r2r
beyn(@)=——| dx | fi(x, a, ¥)Xi(x) cos ny dy,
2n(¢0 Jo
} r! r2r
cm(@)=——1| dx | fio(x, a, v)X(x) sin ny dy. (27)
) 2el), J,

The functions F+ are expanded into a complex Fourier series

Fey= E Ceoyn(a) €™, (28)

n=—co

where

2n
Ct.h(tﬂ:ij. F(') eiﬂde, n=zxl, :"-'2’ e (29)

0
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We describe a procedure of solving the recurrent set of ODE’s based on equations (19).
In order to avoid terms ascending unrestrictedly in time in these equations the following
conditions must be satisfied:

—{Am(a) +iaBm(a)} {(a, ﬂ) + Z TP(APQ, ﬂ) e—r,mi}+ (C(|0)|(0), ﬁ) =0. (30)

p=1

Here (a, b) denotes the scalar product. By equating to zero the real and the imaginary
parts of equation (30), we obtain two equations to determine the quantities A,o(a) and
Bio(a). Then we can find Vo and y,o, and further successfully solve the recurrent set of

equations.

3. TWO-PARAMETER UNFOLDINGS
From equations (6) one obtains
®(a)=da/dt= A0+ * Ay + E Aso+ Ay + E Ay + s’ A+ O(y'; k+1=4),
w(a)=dy/dt=w+ eBjo+ £’ By + ' Bso+ e By + By + e’ By, + O(*u'; k +1=4),
(31)

at the initial conditions a() =ao, y(%)= yo. From the first of equations (31) we obtain
the dependence a(f), which upon introduction into the latter of equations (31) enables us
to determine the dependence y{a(7)}. Thanks to this it is possible to analyze the slow
transient processes leading to steady state. The latter are analyzed by assuming that
da/dt=0, which leads to the algebraic equation

P(a, &, p)=Ant+edn+ 32A30+ﬂA|1 +epdy +ﬂ2A|2=0a (32)

where the A, are functions of a. Because a branching problem does not change (at least
qualitatively) when we change the co-ordinates, we can introduce the following unfolding
classification. In what follows, equation (31) is transformed into

Az + 24 ep + Ayop + 24506+ 2451 + A0 =0, (33)
where '
A5|=%A21, A50=%Azo, Ail___%AII- (34)

Equation (33) presents implicit second order algebraic functions if 43y, A3, and A4,, are
not equal to zero at the same time. The form of the function is determined by the
expressions

Aso Ady Ab e
W=det| Ay Az An |, V=de:(Af" Az'), S=As+ Az,
Az An A 2 e
W22=A30Aw_(/4'20)2, W:|=A12Aw_(A;|)2- (35)

By means of shifting the origin of the co-ordinate system and turning the axis, it is possible
to obtain the following functional forms (expressions W, V and S are the invariants of
such shifts and turns): (1) ¥'>0, AW <0—curve (33) is the ellipse £?/4%+ p?/B*=1; (2)
V>0, W=0—equation (33) can be transformed to (£°/4%)+ (u?/B*) =0 and the solution
is the point (0, 0); (3) V>0, AW>0—curve (33) is an imaginary ellipse (no real curve
exists); (4) V<0, W#0—equation (33) defines the equilateral hyperbola (&?/a®)— (u?/
B%)=1; (5) ¥<0, W=0—the solution of equation (33) is a pair of intersecting lines (&?/
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AD—(u¥/B)=0; (6) V=0, W#0—the curve governed by equation (33) is a parabola
p’=2pe; (1) V=0, W=0, W, <0 or W,>0—equation (33) presents a pair of parallel
lines u2—A?=0; (8) V=0, W=0, W;;>0 or W,,>0—the solution of equation (30) is the
imaginary parallel lines u*>+ A>=0 (no real curve exists); (9) V=0, W=0, W,;=0 or
Wy, =0—the solution of equation (30) is a double line p>=0.

The coefficients of equation (33) are functions of the amplitude a and their values are
determined by the functions fi+). It should be emphasized that the two-parameter family
governed by equation (33) can undergo elementary catastrophes. If we have one-parameter
family, then the fold catastrophe is possible. Two parameters can give a reason for the
occurrence of a cusp. Finally, if a third parameter is introduced, a swallowtail can occur
(for details see reference [7]). All of the above mentioned catastrophes are concerned with
the static situations. If we consider additionally the dynamics governed by the amplitude
equation (the first of equations (31)), and then the dynamics of a flow defined by the full
equations (1), a very complicated behaviour is expected.
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