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Abstract. The two-parameter perturbation method. applied to the example of periodic oscillations in periodically driven
nonlinear dynamical systems, is presented. The analytical conditions are given for the existence of a two-parameter family
of periodic orbits in nonautonomous dynamical systems in both non-resonance and resonance cases.
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1. Introduction

Approximate analytical methods allow one to find the explicitly given relations between parame-
ters in order to fulfil certain optimization criteria, and/or to define bifurcation points in the
considered dynamical systems. This is one of the most important tasks in engineering. Also, in
many practical cases, the rough use of such techniques makes it possible to estimate the parameter
sets mentioned above. At that point, in order to obtain greater accuracy, numerical methods can
be used.

Recently, attention on so-called two-parameter bifurcations [1, 2] has increased. It is expected
that after determining a sufficient technique for the analysis of two-parameter bifurcation
problems, many unsolved questions will be explained.

The aim of this paper is to present an approximate analytical method based on the application
of a two-parameter perturbation, in order to find the analytical condition for the existence of a
two-parameter family of periodic orbits in nonautonomous systems. An analysis of the existence
of two-parameter periodic solutions in the neighborhood of the starting periodic solution of the
fully integrable equation system is performed and their structure is shown. We consider
nonautonomous nonlinear systems, and a family of periodic solutions for both resonance and
non-resonance cases is demonstrated.

The method is developed in the spirit of the asymptotic techniques described in [3 11]. We
discuss the problem of whether the analytically obtained solution converges with the starting
solution of the fully integrable system for two independent parameters simultaneously driving at
zero. The lack of such an analysis can even lead sometimes to erroneous results, because the range
of applicability is not defined and the estimation of the small parameter, for which the solution of
the truncated equations correspond to the solutions of the original system, is not given [12]. Our
paper contains the illustrative example, in which the estimation of the influence of two in-
dependent parameters for the obtained results is outlined.

The presented approach is a continuation of earlier research, where the two-parameter
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perturbation method was used to analyze: (a) periodic oscillations in nonlinear parametrically
excited mechanical systems [13-15]; (b) discrete-continuous mechanical systems [16]; and (c)
bifurcated oscillations [17-20]. The analysis of the convergence of the two families of periodic
solutions with the solution of a fully integrable system is an extension of the Zubov method [21]
for two-parameter systems.

2. Non-Resonance Case
Consider the following dynamical system

X=Ft X, e, pn), (1)
where (a) F is continuous and X € R"; (b) F satisfies the Lipshitz condition in a certain finite
hyperspace PE R", |F(t, X) — F(t, y)| = C, |[X — Y|, tE(—*, +%), and C, is a constant depen-
dent on P; (¢) F(t +2m X)=F(t, X) for e=p =0; (d) the solution of X = X(z, X", 0,0) is
determined for every t=0, X" € R", where X = X" for 1=1,; (¢) € and p arc certain small
parameters, and € € [0, €,], n €[0, g,]. Let us assume that the system (1) for e = u =0 has a
family of 2#-periodic solutions

X=X”(’- C,..., C) (2)
which depends on k arbitrary constants. Let us look for a certain new function Y defined by

X=X"+Y(t e pn). (3)
After introducing (3) in (1) we get

Xo+ Y(t, e, n)=F(t, X'+ Y(t, €, ), €, ), (4)
and further

X, + Y(t, e p)=F(t, X"+ Y(1,0,0),0,0) + eF\"(t, Y. e, u) + pF (1, Y, €, p) (5)
0 1

because we consider the norm of Y(¢,0,0) as a small we omit all terms with the power Y*, for
k=2, and from (5) we find

X, + Y(t,e, p)=F(t, X )+ R, ()Y + (1) + e F\"(t, Y, €, p) + pF(1, Y, €, ) . (6)
Finally, in accordance with (1), we obtain from (6)

Y=R,()Y +&,(t)+eF "t Y, e, u)+ nF(1, Y, €, 1), (7)
where F{"(t)= F\V(t+27), FP(t) = FP(t +2m), ¢,(t) = ¢,(1 +27).

We assume that none of the characteristic exponents of the system (7) (fore = u = ¢, =0) is
equal to =27ikN L k=0,1,..., i> = —1, where N is a natural number. From (7) fore =u =0
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we obtain
Y=R,(1)Y + (1), (8)
and in this case (5) has one 27-periodic solution (because ¢,(¢) is periodic). We shall demonstrate
that the system (7), and in what follows (1), also has a two-parameter family of periodic solutions
with period 27, approaching the 2#-periodic solution of the system (8) when e =0 and u—0.
The system (8) can be reduced, when the solution can be presented as follows

Y=8()Z, 9)

where the matrix [S] has periodic coefficients.
In accordance with the Jerugin’s result [22] the system (8) can be reduced if and only if

F=5()e™, (10)

where R is the matrix with constant coefficients and F is the matrix of the independent
fundamental solutions of (8). From (9) and (10) we get

Y=Fe "Z. (11)
Differentiate the left side of (11) and according to (8) we get
Y=Fe ®"Z+R,(1)Fe ""Z + ¢,(1)e ""Z — Fe "®"RZ =R, (t1)Fe " Z + ¢,(1) , (12)

which finally leads to the form

Z=RZ+ ¢(1), (13)
where
d(t)= o, () — e *Z)S (1), (14)

and [ is the identity matrix.
Thus, instead of (7) we consider the following system

Z=RZ+ d(t)+eF(t,Z, e, u)+ uFP(t,Z, €, ). (15)

The system (15) for e = u =0 has a 2sr-periodic solution

Z=e"CH+ f " (r)dr . (16)

0

-

The constant C is found from the condition of periodicity

2

C=(U-e"" +J’n e () dr . (17)
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Let us now discuss the periodic solution found near (15). We shall introduce a two-parameter
family of vector functions dependent on N and such that

~ ~

Y=Y(N.X. e, p)=XQ2aN. X, €, ). (18)

where X is the solution of (1). The problem of the existence of a periodic solution of (1) has been
reduced to the problem of a fixed point of the mapping (18). Let us assume that (18) has the
solution X" at e = =0. To this solution corresponds the 2 N-periodic solution of (1) at
€ = . =0, with the form

X =X,(1, X,0,0). (19)

It is necessary to find a periodic solution of (1) which approaches (19) at e -0 and . — 0. If such
a vector function X"(e, n) is found, then if X— X" at € and u for sufficiently small € and g, the
problem is solved. The question of the existence of periodic solutions of (1) has been reduced to
the problem of the existence of the implicit function X = X"(e, p).

Let us assume that Y = }7(r, X, €, p) is the solution of (1) and it satisfies the initial condition
Y =X for t=0. Using the notation in the scalar form, we obtain from (1)

dj}'(E. M) ~ ~ 2 -~ -~

JT = EF‘;’]](Z‘ yl’ A yn‘ €, I'L) + P’Ffj-‘(r* yl‘ st yn‘ €, lu‘) *

j=1,....n. (20)
We differentiate both sides of the equations (20) consecutively in relation to x,... ., x,. As a

result we obtain

e n (ry =~ A2 L~
d(dy,.)=z][€apf1&+ aF; &}

de \ox,/ 5 ay, ax, H ay, ax,
N Wi N { (1) 3y, (2) a;;:'}
,2, b dx, iz, €bj; ax, wb; ax, )’
ihk=1,....n, (21)
where according to (21) we have
,. oF
[b,]=€b')” + b} a—ff. , (22)
calculated for Y = Y(t, X, €, ) and
[6,]= B(1, X, €, n) . (23)
From (13), the functions ay,/dx, (i, k=1,..., n) are the solutions of the equation system
dy .
Y B X, e, )7 . (24)

dr
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Let us assume that the matrix of the solutions of (24) is [Y*(1, X. e, w)]. If we account for the fact
that for € = u =0 we have X = X", then ¥ = Y(r. X" 0.0) is a 2w N-periodic solution of (1). and
in this case the matrix [B(t, X", 0, 0)] is also 27 N-periodic. Since Y = X for 1 =0, then the matrix
[Y*] =[] for t = 0. Thus, the matrix [Y*(r, X, €, p)] = {€"(t, X, €, p) + n Y (t, X, e. )} is a
system of fundamental solutions of (24).

On the other hand, if there is a fixed point X" and a number N >0. such that
}7(N. X e, uy=X"at e=p =0 and

D(V“ ]*‘ * '9yn} })

D(x(" D 70,
I AT
Dy oy
() } y[,.} ) 40 (25)
J|()(XI LA n )
where D denotes the determinant obtained for X = X", where y''"' =y’ — x{"’, i = 1,2, then the

system (1) for sufficiently small € >0 and p >0 has such a 27 N-periodic solution of X =
X(t, X, (€. m). €, ), that X = X,(e, u) at t =0, X,(e, u)— X" for e—=0 and u— 0.

3. Resonance Case

We assume that simple elementary divisors [21] correspond to the resonance multiplied eigen-
values, and that there are k eigenvalues equal to zero and 21 others with the form *iMN ' from
among the whole set of A,,..., A, eigenvalues. The imaginary values will be denoted as
v, — v, ..., v.Inthis case it is always possible to find such a linear transformation of the
vector Y with real and constant coefficients so that the system (4) can be reduced to the form

du, s
d‘;‘ () +eFOLUX. Y, Z e, p) + uFO(L U X, Y. Z, €, ),

dx

L=y, )+ eA)(L U X Y, Z e, p)+pA (LU X, Y, Z, €, 1),
dy, . 2

d_; =vx,+n,()+eE) (U X, Y, Z, € p)+ pED (U XY, Z. € ).
dTZ; = pz, + 0+ el (U, X, Y, Z, e, p)+ ul'P (U X, Y. Z, €, ),
C =1

s=1,..., k, p=1,...,0, r=1,....m, k+2l+m=n,

Y:(y]'l"'!yk)" Z=(Z| """ Zm)" (26)

and the matrix [ p,;] has no resonance values. Let us perform the following change of variables in
equation (26):
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X, =X,Cos p,t+y, sinyt,

y, =¥, sinyt—y, cosu,t, (27)
where p=1,..., [ From (26) we obtain

dv, _. (1 (2)

3 WO eFT(V. Z, e p)+ nF (LY, 26 )

dz 4 ,

4 =2 Pt O+ DNV, Zoe p) + ulP Y, 2, p). (28)

=1 -

where the following denotation is assumed: s=1,...,.k+2l,r=1,...,m,andv, =u, v, , =
X, Vgapep =y, fors=1,...,kand p=1,..., [ Consider the equations (28) at € = u = 0. They

have a family of periodic solutions with period 27N dependent on (k + 2/) constants if the
following conditions are satisfied:

2aN
L w(r)dr=0, s=1,... k+2l. (29)

Assume that equations (29) are satisfied. In such a case the family of periodic solutions can be
presented as follows:

k
Vt = C,i + J;I wi‘(T) dT ?

Z=Ce"'t+ f "= g(r) dr | (30)

0

where

0(1) = (v,(1), ..., v,(0),

P= prr' "
2o N

C=(—-e™)! fn e"™N g(7) dr . (31)

We seek a general solution of the system (28) for the following initial conditions
Ve, ) =c, +ed"(e, p) + pd (e, 1),
Z(e,u)=C+eGV(e, p)+ nG% (e, p), (32)

fort=0,s=1,...,k+2l According to (28) we have

-

V(t,e, p)=c, +ed (e, u)+ wd P (e, u) + J;

r

w(r)dr + e J:} Fi”(‘r‘ V.Z, e, n)dr

+,uL FP,V,Z, e p)dr,
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[

Z(t, €, p) =" (C+eG (e, p) + wG e, p) + f "7 7g(r) dr

0

+ € L "INV, Z, e, w)dT + ft] eIV, Z, e, w)dT . (33)

We look for the periodic solutions, i.e.,
V\'(I' E'! p") = V\'(t + ZﬁN‘ E" Ju') ?

Z(t,e, pu)=Z(t+2mwN, € p),
s=1,...,k+2l. (34)

Taking into account (34) in (33), we obtain
27N

R uRY =] ROV, Z e e

0

2n N
+p£] Fi\l}(T,V,Z,E,,U.)dTZU.

2aN

(egw,.\'P_ I)(EG“](f. P")+ ,U.GU](E, ”)) + EJ- eP(zﬁf\'——T)l“fII(T‘ V.Z. €, #) dr

0
2aN
+,u,J; ePQ"N_”I‘m(T, V.Z,e,7)dr=0. ’ (35)

From (35) we find

2o N
R_f.”:ﬁ F'(1,V,Z e p)dr;

)

2aN

GV=E"""-1n" f NI (1 V. Z, €, n)dr;

0

2w H
Rizl = J; F.E.z}('r, V.Z,e, u)dr;

2aN

G? = (ehﬁp -0 J C’(hN—”F(E](T, V.Z,e, pn)dr. ' (36)

0

After calculating G'" and G‘® and then V and Z from (33), we can determine the unknown set of
d’,....d\),, i=1,2, from the following equations:

2aN
R\ ... dil)y) =L FO(r,V,Z, e, p)dr =0,

2aN
RP(d?,...,dl),) = L FP1,V,Z, e, n)dr=0.

s=1,.... k+2l. (37)
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[t seems evident, then, that not every periodic solution can be a limiting solution for the periodic
solution of the nonlinear system (20) for e =0 and p— 0. The limiting ones are the solutions
which satisfy (37). If the condition (37) and the determinants

D(Ri”, R R.[k-la}z.r)

D\, ..., diy)

#0,

(2) (2)
DR, ... R,

(2) (2)
D@, ..., d?,

#0, (38)

are satisfied, the equation system has 27 N-periodic solutions for all sufficiently small € >0 and
w >0, unrestrictedly approaching the 2w N-periodic solution of the nonlinear system (20) at e —0
and u— 0.

During further calculation one can construct the recurrent set of equations obtained by
comparing the expressions by €“u' (for k > 1), and the corresponding set obtained for u'e* (/> k).

The last set of recurrent equations is determined after comparing of the expressions by (€, p)",
where m=k = 1.

4. Example

The example presented below has three important parts: (a) we demonstrate the use of the two
perturbation method applied to nonautonomous nonlinear oscillator with delay, (b) the frequency
w(r — u) of the linear part of the governing equation depends slowly on time 7= e¢ and
additionally on delay the u, (c) the majority functions are given and the analysis of the influence
of parameters for the validity of results is given.

Consider the following oscillator

d’ ) ;
d—j+w'(r—,u)x=~ex'+uf’cosr, (39)

where € and w are two independent small parameters and in order to avoid tedious calculations we
assume p ~ € (the similar but autonomous system without delay has been considered in [24]).
We put

0’ (1= p) = 0 (1) ~ 2pe(7), (40)

to (35) and obtain

dr _
dt Yo -

dy 2 2

_&;:_w (7)x — ex” +2pw(7)x + pPcost, (41)

The solution of (41) are sought in the form
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x =xy(7, 1) + ex (7, 1) + pxy, (1) + -,
y=yo(r 1)+ ey o(r, 1)+ py, () +---. (42)

After introducing (42) to (41) and comparing the terms standing by € and u we get

dx ax 0x

d;u = 3:] € 3;0 =Yt fio>

d 0 ]

i I R A (43)
dx,,

dl’ = y(}l ’

Wio __ 2, + 208, + P (44)
W = —w Xy, wXx, Ccost,

where:
fm _—TI ’
6y e 2.2
S = 3: Xy~ 2€x0X,,~ €°X} . (45)

Suppose that x,,. y,, are two independent solutions of the following homogeneous system
obtained from (43)

dx,, _
dt Yor »

dy N
TR (46)

and additionally

xl(!)(o) ym) =1,
xm](U) y(ul)) =V, ' (47)
as well as
(1 (1)
A= (x<‘9 Y (‘9)) =1. (48)
X0 Yo

The following is a general solution of (46)
X0~ Cixyy + Cﬁxglzl) ;

Yio = I,Vw) + C"y[nz)) . (49)
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(k)

We assume (for further considerations) that |x\¥)| = « and |y!}’| =« ., where k =1,2.
We substitute (45) to (43) (where now C, = C,(t) and C, = C,(t)) and we obtain

(fm)’m - f‘!uxw)) dr,

1)
G, = J; (f’(}x(léll fm}’m]) dr.

From (49) we have
! ax —ay
_ (1) (2) 2%y (2) 0 (2) (2)
X0 = X9 L { Yo E — X ( ar — X, —2ex,x,,— € xlU )} dr
)

—ady dx

(2) (1) 0 (2) (2) (1) 0
+ X0 (1) L{xm ( ar — X, —2€x, X~ € xIU ) + Yo E} dt

1 .
dx __ay )
(1) (2) ?Xp (2) 0 (2)
Yio= Yo j {‘J’m ar ‘_xw( ar — X, —2€xX,X;, — € -’flu)}d‘

ax
2) (l) (2) 1y %X
+ )’m (f)f{xm — X, —2€X,X,, — € xm ) + Yo ar }d'f

Supposing that

0X, ay
(2) 2) %Yo (2) 2
"_}’m E"'xm Fyn + XX =b,

b 9%, — 9y 2 <
10 T 10 61_ 10 -+0 ’

|xni =A,

we get from (51) the inequality

|z| =2a J; (b +2eaAl|z| + €’az’) dt,

where

z(t) = x,(1) = y,0(2) .

(50)

(51)

(52)

(53)

After solving it is possible to show that x = x,, y =y, are obtained with the error depending on €

smaller than
Ay = ze,
where

|z|:—’|xm|» |ZIZ|Y1U|1 O=t=l, O0=7=T.

(54)

(55)
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Now we consider the influence of the error depending on u. We take

w(r) = xm(f) = J"m(‘) s
lI|=B, |wyl=B and |f,|=D, |ful=D. (56)

and from (44) we obtain

dw
— =Bw+D.
a Bw+ D (57)

The solution of (57) is

D Bt
w=g (" =1). (58)

Finally, the influence of the error depending on € and u is smaller than

A=ze+ % e - hHp , (59)
where;
|z|2|xm , Izl:—}lyml1 |W|E|x“||. |W|E|}’(,||, O=t=l, O0=7=T. (60)

5. Concluding Remarks

This paper presents an original method of determining two-parameter periodic solutions in
nonlinear discrete dynamical systems that are periodically excited. The method is an extension of
the classical perturbation technique for systems with two small independent parameters. The
problem of the existence of periodic solutions has been reduced to the analysis of the existence of
the fixed points of one-to-one continuous maps. It has been shown that the obtained vector
function is a periodic one implicitly dependent on two independent perturbation parameters. If
the parameters approach zero, the analytical solution approaches the solution of a fully integrable
differential equation system. Initially, the non-resonance case was considered, and the conditions
for the existence of periodic solutions in such a case were formulated. Next, the resonance case
was considered, where from among the eigenvalues A, . .., A, there are k zero ones and 21 with
the form =iMN~". On the basis of the theory of one-to-one mapping, the necessary condition for
the existence of periodic solutions dependent on two small parameters has also been formulated.

The obtained results are very important because, in fact, in many dynamical systems the
observed periodic orbits may be governed by more than one independent parameters. The
presented method enables the independently generated families of periodic orbits to be con-
trolled. It should be pointed out that such behaviour can not be detected by the use of the
single-perturbation technique or numerical observations. This is because in both cases the
independent families are identifying a single-variable family of periodic orbits. It can lead to some
incorrect results. For example, suppose that one of the independent periodic families vanishes due
to a saddle-node connection and chaotic orbits appear (for numerical examples of such behaviour
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see for instance [23]). The other families of the periodic orbits, however, governed by the other
control parameters still exist. In this case we have obtained the explanation for the coexistence of
periodic and chaotic orbits, which can not be explained by the classical approach.

As has been mentioned in the Introduction, the lack of the range of applicability of the
asymptotic analysis can lead to untrue results. The special example illustrates a general technique
to obtain the majority functions, the estimation of time ¢ and two perturbation parameters € and p
which lead 'to the correct results. Also the estimation of the error, which corresponds to the
analytically found solution, is explicitly given.
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