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Bifurcation, periodic and chaotic orbits of the two-body
non-linear mechanical system

J. AWREJCEWICZ

Dimensionless nonlinear differential equations with periodically changing coeffi-
cients governing the dynamics of a rotor with rectangular cross-section fixed in rigid
bearings of a rigid frame are analyzed. The use of the Newton — Raphson procedure
as well as the sooting method has made it possible (with a high calculation accurracy)
to observe the periodic orbits changes accompanying the changes of chosen parame-
ters, with a simultaneous tracing of the values of the multipliers. The latter are decisive
for the stability and bifurcation of the considered periodic orbits. Two different
scenarious leading from periodic to chaotic orbits, which are not found in simple
three-dimensional systems, are discussed and illustrated. Additionally the evolution
of chaotic orbits during the change of a control parameter is observed.
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1. Introduction

The chaotic dynamics of simple nonlinear harmonically excited oscillators
has been widely discussed (see for example [1, 2, 3]), where various methods of
analyzing the traunsition from regular to irregular motion are shown. An special-
ly useful method for tracing the periodic motions is the numerical method based
on the solution of a boundary value problem using the shooting or Newton
method or its modified version [4]. On the one hand, it makes it possible to
calculate fixed points (periodic orbits) with great accuracy, and on the other, by
means of simultaneous observation of the Floquet matrix eigenvalues, it enables
us to obtain information concerning the stability and bifurcation of the periodic
orbit considered. Moreover, the bifurcation points are accurately determined,
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which in the case of the saddle-node bifurcation makes it possible to determine
the critical parameter values, after passing which chaos appears.

The method was also used to observe the periodic orbit in a complex mecha-
nical system with three degrees of freedom which is considered here. This kind
of system was chosen for the following two reasons. The first has an application
character and is reduced to the analysis of chaos in oscillating mechanical
systems. The second has a cognitive aspect: It deals with the question if in
complex physical systems there are transitions from periodic to chaotic motions
different from those discovered in simple sinusoidally excited oscillators.

The analytical methods which lead to the discovery of chaotic orbits in simple
anharmonic oscillators [5] seem to be or little or no use for the analysis of
complex physical systems. Thence, in the present work the complex mechanical
system is analyzed using numerical methods. Such an approach was used earlier
with success for the analysis of single [6, 7] as well as coupled [8, 9] anharmonic
oscillators.

2. The system analyzed

The diagram of the analyzed system is presented in Fig. 1 (the very similar
system to this was considered earlier in [10]). A weightless rotor with the
rectangular cross-section is fixed in a rigid bearings of a rigid frame 1. The
frame, which can move only horizontally, is supported nonlinearly. Also the
cylinder-like mass m, concentrated in the middle of the rotor, is nonlinearly
supported in the x, direction.

The calculation model of the analyzed rotor is presented in Fig. 1b. The
equations of motion of the rotor have the form:

mx, = —§kecos @ — nk,sin @,
my, = { kesin @ — 1.k, cos @+ mg,

L& = —My+a(—&k, cos @y + n,k, sin D). 4))
where:
x., y. — coordinates of the center of mass of the cylinder,
I — mass moment of inertia of a cylinder with mass m in relation to the
Z axis,
&., n, — coordinates of the point of puncture by the rotor in the coordinate
system,
O’¢(n — coordinate system whose axes are parallel to the main, central inertia

axes of-the cross section of the rotor,
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ke, k, — rotor rigidities in the direction of the axes ¢ and 7,

M, — driving torque reduced by all the resistance torques,

a, ®, — parameters characterising the position of the center of mass of the
disk C in relation to the point of puncture of the rotor. For the states
near the steady ones the torque M, is very small. Let

I, = mi?, (2)
where i, is the inertia radius, then the third equation of (1) will assume the form
é = —% (—&kecos @y + n,k,sin D). 3)

mi;

”&’“éi(?" -

v

—

w d
= N
B
3
X
]
A
0 X O Y x
X, x'
W
q Yu=Ym )
‘ ) Ye=de
i — W\~
\ G“‘"\ g o'=C x"=
Yo
m
Xu 1? 9
- \ Xe
\ Xc
y F y ‘ n J 1

b)
Fig. 1. The analyzed system (a)) and a calculation diagram of the rotor (b))
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As the excentricity a and the rotor deflection £, and 7, are small as compared
to the inertia radius, then we obtain

&=0 &= w=const, D= wt. 4)

The following geometric dependences result from the Fig. 1b:

&, =(x,— x)cos @+ y, sin D,
n, = (x, — x)sin ®—y, cos P,
Yye=y,+acos(®+ @),
X, =Xx,+asin(®+ D), (5)

where x, , y, are the coordinates of the point of puncture by the rotor W in the
system Oxy.

In order to write down the equations of motion of the mass M it is necessary
to determine the dynamic reactions on the rotor in its points of support. They
are determined from the equations

X, + X, + §kecos ot + nk,sinat =0,
Y, + Y, — {kesin ot + n,k, cos wt =0, (6)

where X,, Y, and X,, Y, denote the support reactions on the left and right end
of the rotor, respectively.

After assuming that x = x,, x,. = x,, y, = Xx; and additionally that the force
F, = kx, is acting on the mass m in the x, direction the following governing
equations are obtained

Ky cos 2a)t} X, —

M%), + ¢, %, — kox, + ki xi? + {k§ + Ky + ke —

~ {k§_+ ky | ke —

k1 cos 20t} x + —ﬁ—-———ﬂ x; sin 20t = F cos ayt,
2 2

mx, + Xy — {k§ ; ky + ke — ky cos 20):} X, +

2

+{ ';‘k +k§;choszwt}x2_kax2__k_._g_'.;_._’sﬂxBSiHZQ)[:

- = maa)2 Sil‘l (a)t + ¢0) ’
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— . k. —k .

+ {kﬁ _’2_ k." k= Ky cos 20)1} x; = maw*’ cos (ot + D) + mg,
k,=r {ﬁ%ﬁ’f + ﬁ;—k’l cos 2(0:} — k,x}, (7
where x, — horizontal displacement of the base; x,, x; — horizontal and

vertical displacement of the concentrated mass m situated in the middle of rotor
length; M — base mass; k,, k, — stiffnesses connecting the base with a motion-
less system; @ — frequency of the rotor revolutions; F and @, — amplitude and
external forcing frequency; ¢,, ¢,, ¢; — viscotic damping; g — acceleration of
gravitation; k, — Duffing-type stiffness; r — amplification coefficient. The force
F, can be realized, for example, by induction of a electromagnetic field. Exam-
ples of chaotic behaviour in the systems with a Duffing type stiffness of the form
—kox, + k,x; are considered in a book by Thompson and Stewart [2].
Thanks to the relations given below

1 1 2mgy
T = (koM_])zt, yl == (k|k0"])2x| A x: — E:‘;_'—k}_rp,
x, = 2m8Yys ; ket ky p = ke Ky
ke+ k, 2 2k,
=1 1 1
d, = ¢,(keM) * , e =mg(kky), v = o(Mk;'),
= M_1 1 1
o g = Flkk;*y v = oy (M,
= w’ag "' cos D,, = @’ag "' sin @,, 1
9 ag 0 U g 0 _ 2 (kM)
(ke + k)
! = 8k,m’g¥k,+ k)3, d
4 2C3(k0M_I)2 14 ng( §+ fj) d__=;,
3= ] T
(ke + k)
g =2 _kiky (8)
z k:+k, .
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the following nondimensional set of equations is obtained

y; =.}723
y5 = (1 = 2)y, — y} — by, cos 2vt — d,y, + ey;(1 + £cos 2vr) —
— geys sin 2vT + g cos V,T,

y5=y49

A _—.E{Ey,(l + £cos 2vr) + ry;(1 + €cos 2vr) +
e

7,
+ &ys sin 2vt — dyy, — yy; + q, sin v + g, cos vr},

V5= Ve,
Yo = z {— z g€y, sin 2vt + gy, sin 2vt — ys(1 — gcos 2vr) —
u e
— dys + 1.0 + g, cos vt + ¢, sin w'}. )
3. The method

The periodic orbit of the equation system (9) have been traced on the basis
of solving the boundary value problem (the integration of the differential
equations has been made on the basis of the Gear method [11]). The idea of the
method consists in the construction of the mapping M (y*) = M®, while the
distance between two arbitrary consecutive points in the case of nonautono-
mous systems analysis is equal to the period of the sought solution. The error
E = y® — M® shows the accuracy of the estimation (k). Thanks to the shooting
method and the Newton — Raphson procedure we can look for the values of
E. The calculations are interrupted if | E| < 10,

The analysis of stability of the found periodic solutions is reduced to the
analysis of linear differential equation systems with the periodic coefficients

r

AP’ = J(DAp = (91) AP, (10)
ay yp(D

where J(r+ T) = J(r) and Ap is a perturbation vector of the investigated
periodic solution y, (7).
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According to the Floquet theory, the general solution of (10) is

Ap=®(9Ap (0), (11)

where ®(7) = ®(v+ T) is the fundamental matrix. The eigenvalues of the
matrix ®(T) = 0M/0y, which are the multipliers, are known from the iteration
mentioned above as the Jacobi matrix of the point mapping at the fixed point.

The multipliers determine the stability and bifurcation of the considered
periodic orbit. In the case when one of the multipliers is real and crosses the unit
circle of the complex plane at the point —1 in the direction outside the circle,
the considered periodic orbit becomes unstable. A new orbit with a two times
greater period branches from it.

In the case when the transition conditions given above are retained, if one of
the multipliers exceeds the value of + 1, then ‘the considered periodic orbit
becomes unstable and either an orbit with its period two times smaller or
a chaotic orbit appears.

The last of the classical cases has its place when a pair of complex conjugate
characteristic multipliers crosses the unit circle of the complex plane. In this case
a new periodic or quasiperiodic solution can appear [12].

4. Two different routes to chaos

Let us consider the behaviour of the system accompanying the change of b for
the following constant parameters: z =0.1, d, =04, u=0.1, v=yv,=0.7,
g=05,9,=¢9¢,=00,e=0.1,d,=d;=0.1,r=y=0.5.

A periodic orbit with the period 2r/v,, found for the value of b = 0.00001
(Fig. 2) has been chosen as the starting point. As the oscillations of the coordina-
te ys are negligibly small as compared with the other coordinates on account of
the small value of b, they have been omitted from Fig. 2. Next, the orbit has been
traced with the increase of » by means of the method described in the previous
section. The calculation results are shown in Fig. 3. The curves presented there
are a set of constant points of Poincaré mapping (presentation is reduced to the
projections of y,, y; and ys, while the dashed line shows the unstable solutions.
The point —1 is a period-doubling type bifurcation point.

The newly found periodic solution with the period 4n/v, is an unstable one.
For b = 0.02 it is shown in Fig. 4. As for 4 = 0.02 the smallest characteristic
multiplier has the value of —4.06, and it further decreases with the increase of
b, reaching the value of —15.7 for b = 0.03625, further tracing of the orbit has
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been neglected on account of the weakening convergence of the
Newton — Raphson method for such an unstable solution.

The periodic orbit with the period 2m/v, has been traced for the value of
b = 0.075. For this value of b one of the multipliers has reached the value of +1,
and the further increase of b has resulted in the disappearance of the periodic
orbit, and the appearance of the chaotic orbit. Two projections of such an orbit
for b = 0.1 are presented in Fig. 5 (projection y,(y,) stands for the trajectory of
the concentrated mass fixed in the center of the rotor).

The periodic orbit presented in Fig. 2 can also be observed with the change
of another parameter. We shall show, choosing g for the bifurcation parameter,
that chaotic motion also appears with its decrease, but the scenario leading to
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the chaotic motion is totally different from that presented before. The results of
periodic orbit tracing with the change of g are presented in Fig. 6 where (similary
to Fig. 3) projections y, and y, are shown. For g = 4.55 one of multipliers
exceeds the value of — 1, the solution with the period 2n/v, becomes unstable,
and a new solution branches from it, with the period 4n/v,. Two projections of
the solution for g = 4.53 are presented in Fig. 7. It appears that this solution
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Fig. 3. Solution branches and bifurcation points of the periodic orbit against b
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Fig. 4. Time histories (a)) and three projections of the double-periodic orbit (b), c), d)) found for
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Fig. 5. a), b) Two projections of the strange chaotic attractor (b = 0.1)

loses its stability for ¢ = 4.429, and a new stable periodic solution with the
period 8m/v, branches from it. The solution loses its stability already for
g = 4.41 (one of the multipliers reaches the value of —1). A further decrease of
g results in the increase of unstability of the solution, and for g = 4.3292 the
projections of that unstable solution are presented in Fig. 8 (at that point one
of the multipliers equals —16.58, and another is close to the value of +1).
A further tracing of the cascade of bifurcation doubling the solution period has
been found impossible on account of the branches of the newly created solutions
to the branches of previous solutions. It is easily discernible from Fig. 6 that all
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the three unstable branches of periodic solutions with the periods 2n/v,, 4n/v,
and 8n/v, disappear for the same value of g, = 4.3292 (at that time one of the
multipliers reaches the value of +1). For ¢ > ¢, a chaotic orbit appears with
its exemplary projections for g = 4.3 presented in Fig. 9.
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Fig. 9. a), b) Two projections of the strange chaotic attractor (g = 4.3)

5. Observation of chaos

In order to examine the chaotic behaviour of the analyzed system, a Poincaré
map associated with equations (9) is used. This map or the (y;, y,) surface of

In

section Y. = {{y;(1,), ¥,(t)}, t» = & + 2rnvy '} is calculated by integrating equa-
‘o

tions (9). Additionally, the frequency power spectra (Fast Fourier Transform

calculations) have been observed.
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Fig. 12. Frequency power spectra for y,(7): a) b= 107>, b) b = 0.08

Numerical calculations have been made for the following parameters:
z=d=d,=dy=p=0.1,v=08, v,=1.0, q,=0.15, ¢, =00, r=y=0.5,
E =0.01. If b = 0 then £ = 0 as well. This means that oscillations of ys(7) are
regular. Chaotic oscillations of the concentrated mass m are presented in
Fig. 10 which contains the Poincaré maps projections y,(y;) and y,(y;). With the
increase of b the chaotic dynamics of the rotor also increases and chaotic
oscillations are transferred on the coordinate y;(7). This is illustrated by Fig. 11,
where Poincaré map is projected to three chosen planes in a similar way as
before. If the projections presented in Fig. 11a, b indicate the strangness of the
analyzed attractor, it is clearly seen that projections y;(y;) consists of points
placed on sections of lines arranged radiantly. It is the result of compromise
between the oscillations of the linear subsystem (rotor) in the y; direction, and
the chaotic motions y,(7) and y,(7) coupled through 4. The coupling increases
with the increase of b. A certain hierarchy of chaotic motions can be noticed
here. The travel of phase trajectories in the direction to the left and to the right
of the origin of the coordinate system is several time faster for y,(7) than y,(7).
The time history y;(7) consists of intervals of regular motions either increasing
or decreasing in time with evident jumps between those intervals. The motion
shows, however, a certain characteristic order, which is illustrated on the
projection of y3();) map.

To the increase of chaotic dynamics of the system accompanying the increase
of b testifies the change of frequency spectrum presented on the example of the
coordinates y,(7) m Fig. 12.
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6. Concluding remarks

The use of the shooting and Newton — Raphson methods has made it possible
to trace the periodic orbit changes accompanying the change of two chosen
parameters b and g in the dimensionless equation system (9). That equation
system governs the oscillations of a mechanical system consisting of a rotor with
different cross-section moments (parametric excitation) fixed in a harmonically-
-excited frame. It appears that in such a system it is possible to observe transi-
tions to chaos never met in simple harmonically-excited oscillators, which have
been so extensively discussed lately.

When analyzing the periodic orbit changes with the increase of b, after one
of the multipliers has crossed the point —1 of the unit circle of the complex
plane, it has been found that both the solutions {(with periods 2n/v, and 4n/v,)
are unstable. For b = 0.075 one of the characteristic multipliers reaches the
value of + 1, and the further increase of b causes the appearance of the chaotic
orbit.

In the second of the considered cases the decrease of the parameter g has been
accompanied by three stages of the solution period doubling. A further numeri-
cal tracing of the cascade of bifurcation has been found impossible on account
of the closeness of the bifurcation branches of the solutions. The calculations,
however, have made it possible to discover another characteristic feature of the
scenario leading to chaos. All the three branches of solutions which are unstable
disappear simultaneously for a certain value of ¢,,. For ¢ > ¢,, a chaotic orbit
appears.

Finally, a special kind of evolution of strange chaotic attractors with an
increase of the control parameter b has been discussed and illustrated (a certain
hierarchy of chaotic motions has been shown).
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