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Based on the example of a sixth-order set of nonlinear differential equations governing the dynamics
of a mechanical system with three degrees of freedom, this paper presents a numerical method for the
systematic tracing of structural changes of the phase flow, which accompanies changes in the chosen
system parameters. The periodic orbits are traced by solving a boundary problem with the shooting and
Newton—Raphson methods. Irregular motions are observed using the standard methods based on the
solution of the initial value problem. Two different scenarios leading to chaos, as well as some special
examples of chaotic dynamics, are discussed and illustrated.

1. Introduction

Nonlinear differential equations of motion governing the dynamics of complex mechanical
systems are often solved numerically. The reason as widely described in the literature is that
approximate analytical methods are generally available only for weak nonlinearities and for
oscillations with small amplitudes [1-10]. They allow only for a local investigation of the
nonlinear dynamics of the considered system. Additionally, if the nonlinear dynamics changes
qualitatively (after bifurcation), another analytical approach should be used to analyze the
behavior of the system in this new dynamical state. If analytical asymptotic techniques, such as
the method of averaging or the method of multiple time scales are applied, their range of
applicability must be considered. Without an estimation of the small parameter (the parame-
ter of the asymptotic analysis) for which the solution of the averaged equations has
quantitative and qualitative correspondence with the exact solutions of the original system, the
results obtained can be wrong. On the other hand, such an analysis is complicated, and only in
a few cases has it been carried out [11-15].

For these reasons, complex mechanical nonlinear systems which include nonlinearities often
have to be investigated by numerical methods. These methods are based on the general
theorems concerned with nonlinear dynamics [16—19] and allow a systematical study of the
global nonlinear behavior of multi-body mechanical systems.

For engineering purposes it is particularly important to know the changes of the phase flow
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of the analyzed dynamical system in a certain space of parameter changes. The presented
numerical approach not only allows this possibility, but permits the determination of the
critical (bifurcation) parameter set which separates the qualitatively different behaviors of the
system (i.e., periodic, quasiperiodic and chaotic motion).

Periodic orbits are traced, with the change of a freely chosen control parameter, by solving
a boundary value problem. Use of the Newton—Raphson procedure, as well as the shooting
method, has made it possible to trace the periodic orbit changes accompanying the changes in
the control parameter with a simultaneous tracing of the multipliers’ values. The latter are
crucial for the stability and bifurcation of the considered periodic orbits. A similar method,
based on the Urabe [20, 21] procedure, has been successfully applied to the computation of
bifurcation points and periodic orbits of the rotor vibrations studied earlier by Brommundt
[22,23]. A similar strategy has also been presented by Seydel [24].

The calculation method used here also allows for accurate determination of the bifurcation
points, which in the case of the saddle-node bifurcation can lead to finding the critical
parameters and, after passing them, chaos appears.

The chaotic behavior is traced using the standard methods based on the solution of the
initial value problem (time histories, attractors projections’ on the phase planes or Poincaré
map projections).

In this paper, such a numerical technique is applied to the study of a rotor having different
cross-section moments and nonlinearly supported in a rigid, sinusoidally-excited frame. Two
different scenarios leading to chaos are discussed and demonstrated. Additionally, if the
dimensionless coefficient b equals zero (the coefficient being proportional to the parametric
amplification), the motions of the rotor and of the frame are independent. An increase in b,
however, couples both the motions. This makes it possible to analyze the following important
question: In what way can two different attractors, a regular and an irregular one, interact
with an increase in a control parameter?

The above calculation strategy has been used by the author in nonlinear analyses of simple
[25.26] and coupled oscillators [27, 28].

2. The analyzed system and equations of motion

A diagram of the analyzed system is presented in Fig. 1 (a system very similar to this was
carlier considered in [29]). A weightless rotor, with a rectangular cross-section, is fixed in the
rigid bearings of a rigid frame. The frame, which only moves horizontally, is supported in a
nonlinear fashion. Also, the cylindrical mass m, concentrated in the middle of the rotor, is
nonlinearly supported in the x, direction.

The theoretical model of the analyzed rotor is presented in Fig. 1(b). The equations of
motion of the rotor have the form

mx .= —¢§ k,cos ¢ —m,k, sind, my. = ¢k, sin ¢ —n,k, cosd+mg,
(1)
I.o =—M,+ a(—§&,k, cos ¢, +n,k, sind,),

where x_, y. are the coordinates of the center of mass of the cylinder, I is the mass moment of
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Fig. 1. The analyzed system (a) and a theoretical diagram of the rotor (b).

inertia of a cylinder mass m, in relation to the z axis, £, 1, are the coordinates of the point of
puncture by the rotor in the coordinate system, O'én is the coordinate system whose axes are
parallel to the main, central, inertial axes of the rotor cross section, k,, kn are the rotor
rigidities in the direction of the axes & and 7, M, is the driving torque reduced by all the
resistance torques, and «a, ¢, arc the parameters characterizing the position of the center of
mass of the disk C in relation to the point of puncture of the rotor. For states near steady
state, the torque M, is very small. Let /. be represented by

1. =mi’, (2)

where i, is the inertia radius. The third equation of (1) then assumes the form
¢ = (a/mil)(= £,k cos b, +mk, sin ¢ (3)

Since the eccentricity a and the rotor deflections £, and 7, are small compared to the inertia
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radius, we obtain

¢=0, ¢ = w = const , ¢ = wt. 4)
The following geometric dependences result from Fig. 1(b):

(& =(x,—x)cos¢p—y,sind, n, =(x, —x)sindp —y, cos o,
(5)

y. =y, tacos(¢p + b)) x.=x, + asin(¢ + b,) ,

where x_, y, are the coordinates of the point of puncture by the rotor W in the system Ouxy.

In order to write down the equations of motion for the mass M, it is first necessary to
determine dynamic reactions on the rotor at its points of support. They are obtained from the
equations

X, +X,+ ¢k, coswt +m,k, sinwt=0,
(6)

Y +Y,— &k, sinwt+n,k coswt=0,

where X,, Y, and X,, Y, denote the support reactions on the left and right ends of the rotor,
respectively.

After assuming that x = x,, x, = x,, y, = X, and additionally that the force F, = k x, is
acting on the mass m in the x, direction, the following governing equations are obtained:

Mx, + ¢ X, — kox, + kox +(3(k, + k) + 3(k, — k,) cos 2wt)x,
—(3(k, + k) + 3(k, — k,) cos 2wi)x, + 3(k, — k,)x,sin 2wt = F cos wyt ,
mi, + ¢4, — (3(k, + k) + 3(k, — k,) cos 2wt)x,
+ (3(k, + k) + Sk, — k) cos 2w)x, — k x, = (k. — k,)x; sin 20t
= maw’ sin(wt + ¢,) , | (7)
miy + cyxy + 3(k, — k,)x, sin 2wt — 3(k, = k,)x, sin 20t
+(3(k, + k) — 3(k, — k,) cos 2wi)x;,
= maw’ cos(wt + ¢,) + mg ,

k, = (3(k, +4,)+ 3(k, — k,) cos 2wt) — kyx3,

where x, is the horizontal displacement of the base; x, and x, are the horizontal and vertical
displacement of the concentrated mass m situated in the middle of the rotor length; M is the
base mass; k, and k, are the stiffnesses connecting the base with a motionless system; w is the
frequency of the rotor revolutions; F and w, are the amplitude and the frequency of the
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external forcing; ¢,, ¢, and c¢; denote the viscous damping; g is the acceleration due to
gravitation; k, the Duffing-type stiffness and r the amplification coefficient. The force F, can
be applied, for example, by induction of an automatic control. Examples of chaotic behavior
in systems with a Duffing-type stiffness of the form —kx, + k x; are considered in a book by
Thompson and Stewart [30]. From the relations given below,

- - 2mgy 2mgy.
r=(eM )y =ik ) L m = T T
k, + k k, —k
2=t b=t =)L e=mgkk)
v=w(Mk,")"?, p=mM "', q=Fkk;)"?, y=w,Mk")?,
2 (k M—I)HZ (8)
_ S c
q, = wzag ' cos @ q; = wzag 'sin & » d,= Z(k;+ kn) ’
_ 2¢y(kyM ") Cap 22 -3 d _.
3= (k§+k,j) , y=8k,mg(k, +k,) ", i
= é — ké B kn
z k.+k,
the following nondimensional set of equations is obtained:
Yi=Yas
=(1-2)y, —y? — by, cos2vr —d,y, + ey,(1 + e cos 2vr)
— geys sin 2yt + g €Os v, T
Y3=Ya>
9)

r

Y= i { y,(1+ ecos2vr) + ry,(1 + € cos2vr)

+ gy, sin 2vr — d,y, — yy; + q, sin vt + g, cos V'r} X

Ys=VYo»r .
, _ Z z . .
Vo= ; s €y, sin2vt + ey, sin 2vr — y (1 — e cos 2vr)

—dyy, + 1.0+ g, cos vt + g, sin w}.
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3. The method

The periodic orbits of the equation system (9) have been traced by solving the boundary-
value problem. The integration of the differential equations has been performed using the
Gear method [31]. The idea behind this method consists of the construction of the mapping
M(y*)=M™, while the distance between two arbitrary consecutive points in the case of
nonautonomous systems analysis is equal to the period of the sought solution. The error
E=y% - Mm% gauges the accuracy of the estimation (k). Thanks to the shooting method and
the Newton-Raphson procedure, we can look for the values of E. The calculations are
interrupted if ||E| = |E|< 10"

The stability analysis of the calculated periodic solutions is reduced to an analysis of the
linear differential equation systems having the periodic coefficients

Ap'=J(r) Ap = (3y'/9y), ,, AP (10)

where J(r + T) = J(r) and Ap is a perturbation vector of the investigated periodic solution

V(7).
J According to the Floquet theory, the general solution of (10) is

Ap = (7) Ap(0) , (11)

where @(7) = @(7 + T) is the fundamental matrix. The eigenvalues of the matrix @(T) = oM/
dy, which are the multipliers, are known from the iteration mentioned above as the Jacobi
matrix of the point mapping at the fixed point.

The multipliers determine the stability and bifurcation of the considered periodic orbit. In
the case where one of the multipliers is real and crosses the unit circle of the complex plane at
the point —1 from the direction outside the circle, the considered periodic orbit becomes
unstable. A new orbit, with a period two times greater, branches from it.

In the case where the transition conditions given above are retained, if one of the
multipliers exceeds the value of +1, the considered periodic orbit becomes unstable, and
either an orbit with one half of its former period, or a chaotic orbit appears.

The last of the classical cases occurs when a pair of complex conjugate characteristic
multipliers crosses the unit circle of the complex plane. In this case a new periodic, or
quasiperiodic, solution can appear [32].

In order to examine the chaotic behavior of the analyzed system, a Poincaré map associated
with (9) is used. This map has been defined as the following sectional surface:

IFI

2 ={{yt). y,(t,)), t,=t,+2mnv,'}.

o

-

4. Two different routes to chaos

The numerical method described in the previous section has been applied to trace the
scenarios leading to chaos in our system. Calculations have been made for the following
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constant parameters: z=e=d, = pu=0.1,v=y,=0.7,4g=¢q,=0.0,9,=1.0,r=y=0.5 and
d,=d;=0.01. On the basis of the boundary problem solution, the changes in two periodic
orbits found on the left and right side of the origin, which accompanied the changes in b, were
traced. For b=10" a constant point of Poincare’s map has been found (y,=0.6993,
y, =0.16294, y, = 0.28719, y, = 1.1982, y, = 2.8236 and y, = 0.35041). The eigenvalues of the
Floquet matrix corresponding to that point are (0.59 + 0.13i), (—0.26 = 0.351) and (—0.36 =
0.191). The orbit has been further traced with the increase in b to the value 0.0407. Within the
range of b € {107°, 0.0378}, the orbit is stable (Fig. 2(a)). For b = 0.040609, it becomes stable
again, while for b = 0.040701 a saddle-node bifurcation occurs. After passing the latter value
of b, chaos appears, with its projection y,(y,) for b =0.042 corresponding to the mass m
trajectory shown in Fig. 2(c). As an example Fig. 2(c) gives, for b = (.038, the time histories of
the unstable periodic orbit.

Similarly, the periodic orbit found on the left side of the coordinate system has been traced.
The solution branch y, is shown in Fig. 2(d) (the starting point for b = 10 7 is y, = —1.0689,
y,=—0.0474, y,=-5.8, y,=-0.346, y;=1.0 and y,=5.0). The traced periodic orbit is
stable to the point Q (b =0.0097). From that point branches the quasiperiodic solution, which
loses its stability after a slight increase in b and chaos appears. Figure 2(e) displays the time
courses of the observed solution at the critical point Q, while in Fig. 2(f) the projection of the
strange chaotic attractor y,(y,), for b =0.012, is shown.

It is worth stressing that the former of the traced orbits has the period T = 2w/ ,, while the
second one has the period 2T/3. The former disappears due to the saddle-node bifurcation
and a chaotic orbit appears. In the second case, after a bifurcation a quasiperiodic solution
appears which exists within a very narrow range of b, and a strange chaotic attractor is born in
its place.

5. Observation of chaotic dynamics

Numerical calculations have been made for the following parameters: z=d,=d,=d, =
nw=01,v=08 y,=1.0,q,=0.15,¢9,=0.0, E=00land r=y=0.5.I1f b=0, thenz—*—ﬂds
well. This means that the oscillations ‘of y.(7) are regular. Chaotic oscillations of the
concentrated mass m are presented in Fig. 3, which contains the Poincaré map projections
y,(y;) and y,(y,). With an increase in b, the chaotic dynamics of the rotor also increases, and
chaotic oscillations are transferred onto the coordinate y.(7). This is illustrated by Fig. 4,
where the Poincaré map is projected to the three chosen planes in a similar way as before. If
the projections presented in Fig. 4(a,b) indicate the strangeness of the analyzed attractor, it is
clearly seen that the projection y,(y;) consists of points placed on sections of lines arranged
radially. It is a result of the compromise between the oscillations of the linear subsystem
(rotor) in the y, direction, and the chaotic motions y (7) and y,(7) coupled through b. The
coupling increases with an increase in b. A certain hierarchy of chaotic motions can be noticed
here. The travel of phase trajectories in the direction to the left and to the right of the origin
of the coordinate system is several times faster for y,(7) than for y,(7). The time history y,(7)
consists of intervals of regular motions, either increasing or decreasing in time, with evident
jumps between those intervals. The motion shows, however, a certain characteristic order,
which is illustrated on the projection of the y;(y,) map.
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Fig. 3. Projections of a chaotic attractor (Poincaré map) onto (a) the (y;, v,) and (b) (y:, y.) planes (E =0.01,
w=0.1.b=10").

In a way similar to that described above, the evolution of chaotic attractors accompanying
the changes in b for E =0.1 and E = 1.0 is carried out (the other parameters are the same as
in the previous case).

In the case of E =0.1, the chaotic dynamics are much greater as compared with the case
considered earlier (E =0.01). For example, the projection yi(y,) of the chaotic attractor
(Poincaré map) presented for b =0.05 in Fig. 5 does not show the characteristic regularity,
which has been clearly seen for » =0.08 and E =0.01 (Fig. 4(c)). For E=1.0 and during
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E=0.01, x=0.1, b=0.08. '
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changes in b within the range [0.0, 0.08] certain qualitatively new behaviors of the analyzed
system have been found. Similarly to the examples given above, the chaotic dynamics of the
orbits increase with an increase in b. Typical time histories (Fig. 6) and three projections of
Poincare maps (Fig. 7) are shown for b = 0.05. As can be seen from Fig. 7(c), the points of the
map are irregularly arranged and are concentrated in five isolated islands. A further increase
in b, as opposed to the earlier examples, brings about an increase in the ordering of the
points, which are arranged along the radially placed sections of lines (Fig. 8).

6.0 r

Fig. 5. Poincaré map projection yi(y;) of a strange
chaotic attractor (E =0.1, b =0.05).

-10.0

80.0 100.0

Fig. 6. Chaotic attractor for £ =1.0, b =0.05.
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Fig. 7. Three projections of a strange chaotic attractor (E = 1.0, b =0.05).

A particular kind of order in the arrangement of the Poincaré map points has also been
found for another parameter set. The parameters used for the calculation are the same as
before, and w =10.0. For b=10"", three attractor projections are shown in Fig. 9. A
characteristic order in the arrangement of the map points can be seen in the projections of
y5(y,) and yi(y;). The increase in b disturbs the structure of that attractor, and it is replaced
by a new one with projections shown in Fig. 10. The projections y(y,) and yi(y,) shown in
this figure make it possible to draw certain conclusions concerning the system dynamics. The
phase curve y)(y,) travels between the points —1 and +1, and it is very strongly repelled near
the former point, while being very strongly attracted near the point +1 (Fig. 10(a)).

As distinguished from the motion of the trajectory y,(7), the trajectory y,(7) moves only
around the point +1, while the points of the map form a characteristic structure (Fig. 10(b)).
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A certain analogy to the results obtained by Neimark [33] is brought to mind here. He
analyzed a simple dynamical system governed by the equations

. dH oH _ oH oH
=—+ — + =—-——+ — +
where H=r"+ Asin g — A (g is integer, A>0) and f and g are periodic functions with
period 2. The phase curves were governed by the equation H(y,r)=r’>+ Asin g — A=
const, and for H =0 curves dividing the regions of H >0 and H <0 were obtained. The
curves connected several saddles in a closed system. An increase in the parameter w

0.15

(a)

y' 0.00

-0.05 t

-0.10 . L
1.35 1. 40 1. 45 1.50

Fig. 9. Three Poincaré map projections of an attractor found for £ = u =10.0, b =0.05.
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corresponds to the turn of the field, and at a certain critical value a homoclinic structure is
found around each of the saddles. Near such structures, transition to the neighboring
homoclinic structures is incidental. Thence, despite a characteristic symmetry of the attractor,
the motion observed is a chaotic one.

A further increase in the parameter b causes a diminishing of the attraction of point +1
until it attains a negative value. Finally, both points repel the trajectories, and they create an
attractor which is approximately symmetrical about the horizontal and vertical axes crossing
point (0,0) (Fig. 11).
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Fig. 10. Two projections of a strange attractor (E = u =10.0, b =0.05).
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Fig. 11. Three projections of a strange attractor for £ = p =10.0, b =0.08.

6. Concluding remarks

This paper presents a general numerical strategy to analyze the regular and irregular
dynamics of complex nonlinear mechanical systems. As an example, a two-body nonlinear
mechanical system, coftaining a rotor with a rectangular cross-section is considered. This
system is governed by ordinary sixth-order nonlinear differential equations with periodic
coefficients. Two fundamental calculation examples are carried out. In the first example, a
transition from regular to irregular motion (by solving both a boundary and an initial value
problem) are discussed and illustrated. Results obtained in the second example are based on
the solution of the initial value problem.
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On the basis of the presented calculation analysis, it has been shown that in complex
dynamical systems, the chaotic dynamics can differ considerably from that found in simple
three-dimensional ones. The most important results are briefly summarized below:

1. Observation of periodic orbits (found on the left and the right side of the origin) based on
solving a boundary value problem demonstrate different shift routes to chaos. The traced
left periodic orbit is stable to the point Q, where a quasiperiodic attractor appears. A
further slight increase in b causes another bifurcation, and a strange chaotic attractor is
born. The right periodic orbit has disappeared due to the saddle-node bifurcation, and
chaos appears. Additionally, the right periodic orbit has the period T = 2w/y,, while the
second has the period 27/3.

2. The rotor motion in the direction y, is coupled with the other two coordinates via the
coefficient b proportional to the parametric excitation. For b =0, the oscillations of y,(7)
are linear, and through an increase in b it is possible to trace the interaction between the
regular and the chaotic attractor (the parameters are chosen in such a way, that the
oscillations y,(7) and y,(7) are chaotic). As a result of compromise between the two
attractors, it is possible to observe on the Poincaré projection y;( y;) (for several parameter
sets) a certain specific system of points, forming sections radiating out from the coordinate
system origin.

3. Generally, in all the analyzed cases, an increase in b caused an increase in chaotic
dynamics. This can be explained by the fact that with an increase in b, the parametric
unstability zone grows, which causes an increase in the exponential divergence of the
observed orbits.

4. Particularly interesting dynamics are illustrated in Figs. 10 and 11. The phase curve y5(y,)
is strongly repelled near the point —1 (no points are noticeable in the Poincaré map
projection), while it is strongly attracted near the point +1. Its travel between these points
is unpredictable (chaotic). The trajectory y,(7) moves only around the point +1, while the
points of the map form a characteristic symmetrical system, with several homoclinic
structures.
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