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ROUTES TO CHAOS IN COMPLEX PHYSICAL SYSTEMS

J,. AWREJCEWICZ (10OD%)

1. Introduction

Investigations concerning simple nonlinear harmonically excited oscillators with one
degree of freedom show different possibilities of transition from regular to chaotic motion
[1, 2]. The transition can be analyzed by means of analytical or numerical methods [3 - 6].
Generally speaking, physical systems whose dynamics is governed by ordinary nonlinear
differential equations cannot be fully investigated by means of analytical methods. Only
in a very limited number of cases such equations have strict analytical solutions and there-
fore approximate analytical methods are used more often. Such methods, however, have
a limited use, as they make it possible to analyse only weakly nonlinear systems. Moreover,
they have a local character which makes it impossible to analyse the evolution of the inves-
tigated system with the change of a chosen parameter (or parameters). Additionally, the
use of approximate analytical methods for systems with many degrees of freedom is very
arduous—especially when evaluating their calculation accuracy.

The numerical methods have not such drawbacks and on their basis the scenarios leading
from regular to chaotic motion will be observed in three different physical systems.

The first of the considered differential equation systems models the vibrations of human
vocal cords and it is a system of “stiff” differential equations of the fifth order.

The second is a mechanical autonomous system with two degrees of freedom whose
self-excited vibrations are generated by friction.

The third system considered is a nonautonomous mechanical one with two degrees of
freedom. _

The aim of this work is, on the one hand, to analyse the routes from regular to chaotic
motion in complex physical systems and, on the other hand to show similarities to and
differences from the routes to chaos observed in simple sinusoidally excited oscillators.

2. The Method of Analysis

The analysis of dynamics of the three systems will generally be the same. First, the
equations governing the vibrations of the examined systems will be written. Then the
equations will be rescaled and reduced to their dimensionless form. Thanks to this procedure
the number of parameters in the equations will be reduced and, in addition, such equatlons
can govern many other physical systems.

The next stage is the numerical analysis of the obtained. dimensionless differential
equations. Basically, two different numerical methods have been used to observe the
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evolution of the examined system. Periodic orbits have been followed on the basis of the
solution of the boundary value problem by means of the shooting method, while
quasiperiodic and chaotic orbits have been observed by means of the methods based on
the solution of initial value problem (time histories, attractor projections, frequency
spectra, Poincaré maps or Lapunov exponents).

As the other type of methods is well known and widely used in observing chaotic mo-
tions, we shall reduce ourselves only to a short presentation of the first type of methods
used here to analyse autonomous systems.

We take an approximate fixed point x{*’ near the unknown “true” one and a numerical
integration over the estimated period T® is carried out. Using the shooting method the
transformation M(x{®) = M{¥, where k stands for the successive points of the transfor-
mation, is created. The error E = x{ —M{¥ shows the accuracy of the estimation (k).
The Newton-Raphson procedure used here makes it possible to find the fixed transforma-
tion point we seek with a high degree of accuracy (then E = 0).

The problem of the examination of stability is reduced to the analysis of linear differen-
tial equations with periodic coefficients

x|
ox x,(7)
where J(v+2n) = J(7) and dp is the perturbation vector of the investigated periodic
solution y,(7).
The general solution of (2.1) is

(2.2) Ap = @(7)4p(0),

where @(7) = ¢(7+2x) is the fundamental matrix.
The characteristic equation

2.1 4p’ = J(0)dp = dp,

(2.3) y(¥) = det(Hp—»1) = 0,
where

_ _ 0Gg
(2.4 Hy = @(2n) = 53(;

yields the characteristic multipliers. Hg is already known from the above mentioned itera-
tion as the Jacobi matrix at the fixed point.

The characteristic multipliers are decisive for stability and bifurcation of the periodic
orbit considered. In the case of simple eigenvalues of the matrix H, three basic situations
are possible [7]. If one of the characteristic multipliers is real and it traverses the unit circle
of the complex plane with the parameter change in point —1 in the direction from the
centre outwards, then from the considered periodic orbit branches a new one with the
period two times greater as compared with the original one which at the same time loses
stability. If one real characteristic multiplier traverses the unit circle of the complex plane
with the parameter change in point + 1 in the direction outwards from the centre, then from
the considered periodic orbit a new periodic orbit can branch which has the period two
times smaller than the original orbit or, as a result of the saddle-node bifuraction, a strange
chaotic attractor can appear [1]. Last, if a pair of complex conjugate eigenvalues of H
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traverses the elementary circle from the centre outwards, then a new periodic or quasi-

periodic solution will appear. The direction of eigenvectors in the bifurcation point deter-
mines the direction of the new bifurcation solution.

3. Vibrations of Human Vocal Cords

CRONJAEGER [8] has presented the nonlinear mechanical model governing the dynamics
of the vocal cords. A vocal cord has been modelled as a mass with two degrees of freedom.
The stiffness and damping qualities of an anisotropic support of the mass correspond to
the real properties of the vocal cord. In order to describe the possible contact of the vocal
cords, the additional elastic element (a stiff nonlinear spring) has been included in the
model. The stiffness of this element has been chosen so that for horizontal displacement
of the mass approaching the origin (in the given coordinate system) the force in the spring
increases to infinity. It is assumed that the air flow from the lungs is adiabatical and the
Bernoulli suction effect is neglected. Lungs and the air passage have been modelled as
a kettle with stiff walls. The real elastic properties of the lungs and the air passage have
been additionaly included in the elastic properties of the air. The escaping air flow is pro-
portional to the horizontal deflection of the vocal cords and the flow rate of the air—stream
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Fi1G. 1. Mechanical model of human vocal cords (on the basis of Cronjaeger’s work [8]).
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in the kettle. Pressure in the kettle creates approximately identical forces, both in the
vertical and the horizontal .directions of the displacement of the vocal cords. :

The mechanical model of the human vocal cords is presented in Fig. 1. The coordinate
system (x, y) describes horizontal and vertical displacements of the mass and p is subglottis
pressure. The equilibrium point for the mass is (x,, 0), and f is a distance between the
centre of the mass and the adge of the vocal cords. The air viscosity and inertia are neglec-
ted. The equations governing the dynamics of this system are:

mx+cx+ {ky+ko[x—x0)2 + ¥ }(x —x0) —kyy y—ksx~*(1 —¢X) = 0.54p,

G.D -+ my+ep+ {ky+Hk [(x—x0)* + 3?1}y —kyry(x—Xo) = 0.54p,
3
o 2% 019 — 7 Cah(x—f) Qez’p)'?  for x> f,
91 V 919 fOI’ X “g- f)

where m is the mass of the vocal cord (0.24 - 10~ kg); ¢ is the damping of the vocal cord
(<4.10~* Nsm™!); k, is the horizontal stiffness of the vocal cord (k. € [20, 2000] Nm~1);
k, is the vertical stiffness of the vocal cord (k, € [0.7; 0.9] k,); k, is the stiffness of the
coupling between two directions of motion (k;, € [0.3; 0.5] k;); k. is the Duffing’s type
stiffness (<0.1 k.f~?); k, is the additional stiffness of the vocal cords when brought to-
gether (< 0.1k, f**1); ¢, is the additional damping of the vocal cords (when brought together);
s = 4 (exponent); A is the vocal cord surface (6.10~° m?); o, is the average subglottis air
density (1.3 kgm™3); p, is the average atmosphere density (1.25 kgm™3); p, is the average
subglottis pressure (p, € [1.01; 1.1] bar); f is the distance from the point-mass to the edge
of the vocal cord (3.10~3 m); ¢ is the intensity of the air flow (<6.107* m3s~!); V is the
volume to the subglottis réservoir (<3.1073 m3); » = 1.4 (adiabatic exponent); % is the
length of the vocal cord (4 € [12; 18]'1107 3 m). _
In order to obtain the dimensionless equations, the following relations are taken:

T = i,
x(t) = aX(7),
y(@) = BY (D),
P = pP(v),
(3.2) . a=f=f,

0? =km,

and the following dimensionless coefficients are introduced
C = c(mk,)~112,
(3.3) K, = ks,
K., = kykz',
K. = cf@k;l,:
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Xo = xof 7,
(3.3) K = kikz'\f~571,
o C. = felmic)™ 1,
E = 0.54(fk) ',
Q =xp (Vi) 'y,
Ky = ky(mw?)™! = 1.
Introducing Egs. (3.2) and (3.3) in (1.3), the following dimensionless system of equa-

tions is obtained:

X+ CX+ {Ke+ K [(X—Xo) + Y)Y X~Xo)— K, Y— K, X~°(1 - C,X) = EP,

(.4) Y+CY+ {K, + K.[(X—Xo)? + Y?]} Y= Ko )(X— X,) = EP,
b {(X— P2 for X > 1,
20 for X<,

, d
where ' = I

The possible physical description of the new dimensionless coefficients with the inter-
vals corresponding to the real properties of the vocal cords are given below.

C is the damping of the vocal cords (< 1); K, is the vertical stiffness of the vocal cords
(K, € [0.7; 0.9]); K, = 1; Ky, is the stiffness of the couplings between two directions of
motion (K, € [0.1; 0.5]); K. is the Duffing’s type stiffness (0.01); K| is the hyperbolic type
stiffness of the vocal cords when brought together (<0.01); s = 4; C; is the damping of
the vocal cords when brought together (<1); X, is the unloaded equilibrium position,
position of the cartilage (X, € [0.1; 2.0]); E is the average pressure or the vocal cord surface
(E € [0.1;10]); Q is the intensity of the air stream (Q & [0; 100]). The shooting and New-
ton-Raphson methods allow one to trace the fixed points of the Poincaré map (periodic
orbits) with the change of parameters. In this case a linear prediction has been used. The
eigenvalues of the numerically found Floquet matrix are the characteristic multipliers and
affect the stability and bifurcation of the considered fixed points.

In order to normalize the period of the considered periodic orbit to 2z, a relative time
7, = £7 has been introduced during the numerical calculations. Frequency £2 enters the
equations as a parameter to be obtained thanks to the freely chosen phase condition (in

our case )? = 0). Because of the nonlinear term x~*, standard methods based on the
Runge-Kutta algorithm are not sufficiently accurate for integration of the system (3.4).
A variable order, variable step Gear method has been used and calculations have been
made with double precision.

In order to characterize the chaotic orbits the maximum one-dimensional Lapunov
exponent 4., has been calculated. This exponent has been determined by reducing (3.4)
to a system of the first order differential equations
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3:' = X1,
Y = ¥,
(.5
X, = —CX,~ {K.+ K.[(X—Xo)*+ Y2} (X=Xo) + Ky Y+ K. X~*(1— C,X,) + EP,
Y, = —CYy— {K,+ K.[(X=Xo)* + Y?]} Y+ K.,(X— Xo) + EP,
;,: _:(X—I)P’*'2 for X>1,
0 for X<1
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F1G. 2. Three projections of chaotic attractor in dynamic system (3.4).

and the system (3.5) together with its variational system has been solved numerically.
A relatively large set of iterations is necessary to obtain the limit value (about 20,000 itera-
tions have been used) for the considered differential equations.

The route to chaos has been examined for the following fixed parameters: C = 0.001,
K, =10, K, = 0001, X, = 0.6, K, = 0.3, K, = 0001, C, = 0.5, E =10, K, = 09.
Q has been assumed as the bifurcation parameter. For Q = 0.04 a stable periodic orbit
has been found which corresponds to the fixed point X, = 1.5412, X, = 0, Y, = 1.0813,
Yo = —2.1937; P, = 0.0184; 2 = 0.9178. In this case the characteristic multipliers have -
the values »; , = —0.54 +i0.76; »; = 0.74; », = 0.01. The decrease of the bifurcation
parameter leads to the loss of stability of the orbit. For example, for @ = 0.02 the charac-
teristic multipliers are », , = —0.73 +0.74/, which means that for this value of Q the
analysed periodic orbit is already unstable. In the moment when the value (Re(y,,)
+Im(», ;)) = 1 is exceeded, a quasiperiodic orbit appears. This orbit has been further
observed on the basis of calculations of the maximum Lapunov exponent. It has been
found out that the quasiperiodic orbit is very sensitive to the value Q changes. For Q = 0.01
the maximum Lapunov exponent is already positive and has the value 0.0128, which testi-
fies to the occurrence of a chaotic orbit. Some of its projections are shown in Fig. 2.

4. Self-Excited Vibrations in a Mechanical System with Friction

The analysed system is presented in Fig. 3. The vibrations are due to the dependence-
of friction on the relative velocity, which for some velocity ranges has a falling character.
When preparing the equations of motion, two possible states of the system were conside-
red. When the disc moves in relation to the tape then the state is called the slip state, while
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F1G. 3. Mechanical system with two degrees of freedom with given geometry and parameters which make
it possible to derive equations of motion (a) and the dependence of friction coefficient on relative velocity (b)

when the disc does not move in relation to the tape we have the stick state. Other examples
of transition to chaos in the system shown are presented in [9].
The relative velocity between the disc and the tape is

4.1) Vger = ’03“¢'R"(1 + ;W)x-
The following equations of motion in the slip state are obtained
“ ()-8 (g)+xfg) = (]
. <J+Bl- |+ = ,
617 \6) T o) TR
where
m 0
M= h ,
& Vi3 (0]
x? h
| | e e
“4.3) B = . ,
. hxx
20 7 c,
(. 1 h
K - ( ‘TO)K‘ Ry
) i 0 K,
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4.3)| . o Dy L 2)
[(com‘)] mgn(rnl}(‘ul + U, (] _.__;J_;_ ) )’ oo # 0,
= [ d'e d v,
SIgn( drt ! )(M + 143), : ;El"’ =0 for k=0..3G—1 and 9, #0,

not defined for 7, =0.

In the stick state we have

o A T } 1 A :
(4.4) (R2 +m)x+(l—(_{._) )c1x+(l—7°) K, x = (—}—+!—2)(02¢ +K,¢),
where
;U 1 h .
¢=%r {T+x2—wﬁ}x’
ot T et X arcan (X )
¢ =o¢u+t R (t—1ty) R arctan(h)+arctan( 7 ),

and with H we mark the initial values of ¢, x, ¢ for the beginning of the stick.
By the use of transformations

(4.5)

Y1 2= v2i=y1, yii=9¢., yi:i=y;,
4.6) ° s
K o .
1:.—-} -;I-—t and = ()

equations (4.2) with thirteen parameters /o, h, R, Ky, m, ©, g, ¢, c;,v*, vg, uy, p, are
reduced to the dimensionless differential equations with eleven parameters y, o, %, ¥, f,,
B2, D, V*, Vg, uy, p, of the following (first order) form at the slip-state:

Y1 =y,
, 1 py —
y: = «I(I—--;)+ hi 51]()1‘*'#2’)——‘2 (ﬁ2}4+"J’3)( T 7)+m’,
4.7 y3 = ya

’ 1
Ya = _ﬁ‘fz_( 2—2- yzyl“)_"g‘(l‘f": 2 )(432}’4"'"}’3)—

12

where
A= 1ll,,
_ h _ ]0 _ 1 Kz mg _ )
4.8) X —"";", 9 =R 4 —R'E""Iz]—, KTIIO, mRZ
B, := 1 1 Cs pr ¥ V.. Up
- ] ] —— — B —
VK m R VK.m K, K,
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For the stick-state we have

Vi = V2,

— ___.__I_ ]...(_x:_)z ﬁ +(]._..l.) __1__(]4.1“_1__)(5 + xy3)
Y2 (’9+1) 2 1)2 A Y1 99 0 22 2)a Yal},

1 1
Y3 = ysp+ 90 {‘vn(t— Tw)— (Y1—Y1n) ~ arctan (-)%— + r3 arctan (leﬂ)}'

Ya =0 {%-(H% *;,—)yz},

Numerical calculations have been made for the following fixed parameters: 3 = 0.6,
0=25 v =05, v* =10, » =10, §, = B, =005, g, =0.05 px, =02, & =05
v has been chosen as the bifurcation parameter. Its influence on the dynamics of the system
considered appears to be the most important as its change affects the change of mass and
the mass moment of inertia of the disc and the change of the normal and friction forces.
A periodic orbit has been found for ¥ = 0.5 (Fig. 4a) using the method based on solution
of the boundary value problem, and then its changes accompanying the increase of y have
been followed. For ¥ = 0.60946 one of the characteristic multipliers reaches the value
of —1 and the further increase of y causes the loss of stability of the analyzed orbit and
in the bifurcation point a new periodic orbit branches, with its period two times greater
than that of the original one (Fig. 4b). The new orbit does not double its period with the
increase of y. For ¥ = 0.6995, when one of the characteristic multipliers reaches the value
of +1, it disappears due to bifurcation and, instead, a chaotic orbit appears. That it is
a chaotic one is well proved by irregular time histories, points of Poincaré map forming
a strange structure, and continuous frequency spectrum, as well as attractor projections
on planes Y’(Y) and y’(y) (Figs. S and 6).
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Fi1G. 6. Nonautonomous system with two degrees of freedom.
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5. Vibrations in a Nonautonomous System with Friction

Let us consider a system of two mechanical oscillators coupled by a flexible and damping
linear element [10]). Moreoven, each of them is harmonically excited and one is affected
by dry friction. The equations governing the dynamics of these two coupled oscillators are

my %+ (c3— ¢y (Xy— 3 X+ X3 %y + (ky +k3)xy —ky X, +ky X3+
+pm, gsgn(x,) = q,cosw, ¢,
(Sl) mZ.J;Z + (C3 —6'4)&'2—63&1 +C'5x§.k2 + (k3 +k4)x2 ~—k3x1 +k5x% = ¢,COoSw, 1.
When x, = 0 and |F| < |F|, where
F, =pum;g,
(5.2) ‘ .
F= (ki+k3)x,—k,x,+kyx3—c3X,—q,cosm, ¢,

the oscillator 1 (with the mass m,) stops. In this stick-state the system is governed by the

equations
x; =0, x, = const,
(5.3)

myXy+(Cs—cy) Xy +csx3X(kg+k3)x, —ksx, +ksx3 = gcosw,t.

The oscillator 1 starts to slide if |F|—|F,] > 0 and Eq. (5.1) again govern the behaviour

of the system.
In order to reduce the parameter space and to extend the numerical results for the

possibly other physical systems we transform Eq. (5.1) into the nondimensional form,

Iél + (a3 — )&, —aa(K/muzéz +94 -!fffl + (g + #3) &) — 3 (KIM)V2E, + L3 +
(54) | +ngn(é:1) = Bjcost,

I |
St M(as— )&, —ay MPPK™128 +y, KETEr + M (k3 +%4) §2 — MPPx3 K126, +
+£&3 = M32K-12B,cosvr,

where
T=wt, & = (omi)ki’x, & = (0ymy)k3*x,, M = mym3’,
K=kks', »=w07', B, =qor’mki? B, = q,0r’m%;"
(5.5 o =calmo)™, a3 =c(mo,)™, ay=cdmw)™t,  y = w0k,
v2 = w1cekzt, % = kymilort, %y = kymilor?, g = kgmilep?,
R = pgo7s3ki?m7l.
In the case of the stick we have
=0,
(5.6) gz+M(“3"’a4)f:z+}’2K§§£I2+M("3+F4)52"'M'm"sK_uzfi +& =
= M32K-'1?B,cost,

and the condition for the transition to stick-state is
1
6.7 R > |(%; 4 %3) & — 23 (K/M)V2E, + &3 — ay(K/M)'2E, — Beycos ).

9 J. Techn. Physics 3—4/90
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The considered system has a periodic solution for the following parameters: » = 1.0,
M=K=10, # =#x, = —08163, y, =y, =03, B, =005 B, =02, R=0.05,
a, = &g = 0.05, a3 = %3 = 0.3. The transient state shortly before the periodic orbit is
reached is shown in Fig. 7. The increase of «, = a, causes the increase of the self-excited

b)
al

g 14

-0 4

FIG. 7. Phase portraits of the trajectory approaching 2z-periodic orbit in the nonautonomous system.

vibrations quantity. The periodic orbit situated on the left-hand side of the origin of coordi-
nates increases (the periodic orbit on the right-hand side of the origin of coordinates bahaves
similarly). A further increases of «; = «, leads to the loss of stability of the considered
orbits and the trajectory starts to wander in an unpredictable way between two potential
wells. This situation is presented in Fig. 8.

6. Concluding Remarks

The paper presents three different routes to chaos as shown in the three presented physi-
cal systems. In the case of the equation system governing the vibrations of human vocal
cords we have demonstrated the transition from a periodic to quasiperiodic orbit, and
after bifurcation of the latter—to chaos.

In the second self-excited mechanical system with two degrees of freedom it has been
shown that although the considered periodic orbit doubles its period with the change of
bifurcation parameter, this does not lead to an infinite sequence of period-doubling bifur-
cations (which could be noticed when analysing three-dimensional systems). The newly-
created orbit disappears by means of saddle-node bifurcation and chaos is created.

Finally, the third route to chaos presented on the example of vibrations of a nonauton-
omous mechanical system with two degrees of freedom is the same as observed when
analysing a single harmonically-excited oscillator.
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F1G. 8. Two projections of the strange chaotic attractor in nonautonomous system (¢; = &g = 0.2).
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Streszczenie

DROGI DO CHAOSU W ZLOZONYCH UKLADACH FIZYCZNYCH

W pracy dokonano analizy przej$¢ od ruchu regularnego do chaotycznego na bazie trzech zlozonych
ukladow fizycznych. Orbity okresowe Sledzone byly na podstawie rozwigzania problemu brzegowego,
natomiast atraktory quasi-okresowe i chaotyczne na podstawie rozwigzania zagadnienia warunkow po-
czatkowych (przebiegi czasowe, rzuty atraktora na wybrane plaszczyzny, mapy Poincaré, widma czestosci
czy maksymalny wykladnik Lapunowa). Pokazano, ze przejécia od ruchu regularnego do nieregularnego
w ukladach zlozonych moga by¢ podobne lub réine od przej$¢ spotykanych w prostych oscylatorach wy-
muszonych sinusoidalnie.

Peswme

INYTH K XAOCY B CJIOXKHBIX ®PH3NYECKHX CHCTEMAX

B pabore nposeqeH aHANHS NEPEXOLOB OT PETYJSAPHOTO ABH/KEHHMA K XaO0THYECKOMY HA OCHOBE
TpexX CHoXKHBIX (H3nyeckux cucrem. IlepHomguueckne opOMTEI OBLIH CJI€YKEHBI, ONMPASACh HA peLIeHHe
KpaeBoil 3a7lauM, a KBasHIEPHOJMYECKHE M XAOTHUCCKHE ATTPAaKTOPhl, ONHPAACh HA PElIeHHe 3aJauM
HAYALHLIX YC/IOBHI (BpEMEHHBIE NPOLECCH], MPOEKIMH aTTPaKTopa Ha M30paHHBIe IJIOCKOCTH, KApPThI
ITyankape, CnieKTpbl YacTOThl MJIM MAaKCHMaNbHBIN mnokasatens JIsmyHoea). ITokasaHo, 4yTo nepexonabl
OT PEryJIAPHOTO K HEPETYJIAPHOMY ABHIKCHHIO B CJIOBXKHBIX CHCTEMaX MOTYT OBbITh aHaJOrHYHBIMH HITH
Pa3HBIMH OT MEPEXOZOB BCTPEYAeMBbIX B IIPOCTHIX BHIHYKIEHHBLIX CHHYCOMAAJIBPHO OCLWLIATOPAX.
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