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Quasiperiodicity, strange non-chaotic and chaotic attractors
in a forced two degrees-of-freedom system

By J. Awrejcewicz* and W.-D. Reinhardt, Institute of Technical Mechanics,
Technical University Carlo-Wilhelmina, 3300 Braunschweig, West Germany

1. Introduction

In this note we investigate transitions between quasiperiodic, strange
chaotic and strange non-chaotic attractors by means of the example of two
externally driven coupled nonlinear oscillators. There are two main reasons
for our work. First, the coupled oscillators can model many real physical
systems and are more common when compared with simple sinusoidally or
almost periodically driven anharmonic oscillators. (The possibly complicated
nonlinear dynamics of simple oscillators was, among others, presented in
references [1-5]). Second, one can expect much more complex behaviour,
which goes beyond the occurrence of strange attractors, in coupled forced
oscillators [6].

It is known that chaotic attractors may not be strange attractors. They
occupy the full toroidal surface and hence are not strange. However, there
is another class of attractors which are called strange non-chaotic attractors.
In this case the word strange refers to the complicated geometrical structure
of an attractor. Some examples of chaotic attractors which are not strange
as well as examples of the strange attractors which are not chaotic are given
in reference [7).

2. Analysis

We consider two coupled almost periodically driven oscillators
my %, + (c3 — €)%, — €3%; + ¢ax] %, + (k) + k3)x, — k3x, + koxi
= ¢, cos(w; ¢ + ),
(D

My X + (€3 — Ca)Xy — €%, + Csx3%y + (ks + ka)x, — k3 xy + ksx3

= ¢, COS W, 1,
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where m,, m, are masses of the vibrating bodies, ¢, — ¢s and k, — ks-damp-
ing and stiffness coefficients respectively and ¢,, g, are the amplitudes
of exciting forces with frequencies w, and w,. In nondimensional form we
have

T+ (a3 — 0] —ag(KM 1) '2E5 + 9, 88T + (kg + K3)¢,
— K3(KM ~")'2¢, + £ = B, cos(t + @),
$3+ Mo — 24)85 — Moy (MK ') 28] + 9, KE3E5 + M (i3 + K4)E,
— Mi;(MK~")12¢, 4+ £3 = M2K 2B, cos vr.

(2)

where
t=wt, & =(om) 'k Pxy, &= (wymy) k§?x,,
M=mm;', K=kks', v=w,07', B, =qowi’m3k)?
By = qui’m’ky?, oy =ci(mw) ™", ay=c(mw,)",
0‘4=C4(m‘|w1)hls n=w ks, y,=wcsks,

-1, -2 -1,.-2 -1, -2
Ki=kimi wr*, Ky=kimi'w? Ke=ksmi oi”°.

In order to characterize the chaotic orbits the maximum one-dimensional
Lyapunov exponent 4., has been calculated. In the case of quasiperiodic
and strange non-chaotic attractors A,,, <0, whereas in the case of chaos
Amax > 0. The one-dimensional Lyapunov exponent has been determined by
casting (2) into an autonomous system of first order differential equations

§1="m,

ni=—(c + K3+ — (@3 — oy +7,.ED)m + k3 K'PM ~ 1%,
+ 0;K'?M =", + B, cos(¢, + 9),

§2 =12,

Ny =K MK~ + as MPPK =Py — (M(k3 + k4) + ED)E,
x (M(a3 — a4) +72KE3)m2 + M*?K~'B, cos ¢,

3)

where ¢,(0) = ¢,(0) =0. We have solved (3) together with its variational
system ([8—10]) numerically.

Equations (2) possess the following symmetry under the transforma-
tions

T: (éls é; ] 62’ éas 'f) _’(éls éis 629 65! T + 27“’_])'
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Therefore, the Poincaré map M < R* defined as the set

P{&,(x), &1(0), &), Ex(0) [t =2nv "'k, k=1,2,3...},

can be computed, where ¢,,(t) is a solution of equations (2). Finite
approximations of P have been calculated numerically making use of the
Gear method [11].

We begin with an example of a strange non-chaotic attractor. Follow-
ing Grebogi et al. ([7]) strange attractors which are not chaotic are much
less common in dynamical systems and it is not easy to discover them. We
have found such an attractor for the following fixed parameters:
v=04933, ¢ =00, a,=a,M = —0.2857, az=a;M =3, 7, =7,K=0.0,
K, =KksM = —0.8163, k3=x3;M =2, B,=B,=0.25 (Fig. 1a). The ob-
tained maximum one-dimensional Lyapunov exponent is A,., = —0.018.
Hence the solution is non-chaotic. Numerically calculated (FFT) power
spectra presented in Fig. 1b, are shown to be broad-band, which indicates
the strangeness of the attractor. Time histories (Fig. 1c) show how both of
the oscillators move in a qualitatively similar, but aperiodic manner. Fig.
la also presents two projections of the Poincaré map indicating that the
determined attractor has a strange geometrical structure. We have taken as
control parameter B, = B, and we observed that with a small decrease of
this parameter the strange non-chaotic attractor persists. However (with a
further decrease of B,=B,) it undergoes a bifurcation and a new
quasiperiodic attractor is born (see the Poincaré map and power spectra
shown in Fig. 2).

Consider another example, with the same parameters as in the previous
case, with the fixed value B, = B,=0.2. For a;=x;=0.001 a strange
chaotic attractor has been detected. In this case A, = 0.017. The numeri-
cal results are shown in Fig. 3. In this figure we observe an interesting
situation. In spite of the coupling of the two oscillators, the type of motion
of each oscillator is different. The first one (£,) moves chaotically, whereas
for the second (£,) a quasiperiodic motion prevails. Chaotic dynamics of
the first oscillator (£,) is demonstrated in Fig. 3c. From comparison of
time histories with the Fig. 1c the qualitative differences between strange
non-chaotic and strange chaotic attractors are clearly visible. Both of the
mentioned attractors have the complicated geometrical structure (strange),
but only one has a property that nearby orbits diverge exponentially with
time.

Increasing a; and x; slightly damps the chaotic dynamics of the orbits
and the strange chaotic attractor bifurcates into a quasiperiodic one (for
example for a3 = k3 = 0.01 the Lyapunov exponent A,,,, = —0.0015 and two
projections of Poincaré map are given in Fig. 4). This attractor persists
under the further increase of a; and for a; =0.1 it is shown in Fig. 5.
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3. Conclusions

For the investigated system we have discovered strange non-chaotic and
strange chaotic attractors as well as quasiperiodic orbits. In the first
example we have examined the persistence of the strange non-chaotic
attractors for perturbations in the amplitudes of two exciting forces with
incommensurable frequencies. For a small decrease of B, = B, the system
preserves a strange non-chaotic attractor, which for a further decrease of
these parameters is destroyed and is replaced by a quasiperiodic attractor.

In the second example we began with a strange chaotic attractor. We
have illustrated that in one of the two coupled oscillators chaotic motion,
whereas in the other quasiperiodic motion, prevails. Further we have
demonstrated that a transition to a quasiperiodic attractor (with the in-
crease of a;) can occur.
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Abstract

Strange non-chaotic, strange chaotic and quasiperiodic attractors are demonstrated to exist for a
system of two non-linear coupled oscillators with almost periodic excitations. For same parameter values
a transition from a strange non-chaotic to a quasiperiodic attractor is presented, whereas for other
parameter values a shift from the strange chaotic attractor to a quasiperiodic one is found.
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