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Bifurcations of the Oscillations of the Vocal Cords

A mechanical model of the vocal cord was established by CRONJAEGER [1]. This model consists of a nonlinear oscillator
with two degrees of freedom with an elastically supported point mass (Fig. 1), and is governed by the set of nonlinear
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ordinary differential equations which can be presented in the following dimensionless form:
X+ cx + (kx + kc((x - X0J2 + PZ)){X - Xl]) - kxyy - ksx_“{l - cs-f] = EP‘
V4 ey + (ky + kel(x — Xo)* + y*) y — kylx — Xo) = Ep, (1)

L (x — Dp'* for x>1,
p_Q_{O for x<1,

where ¢ is damping of the vocal cord, k, horizontal stiffness, k, vertical stiffness, k,, is a stiffness of the couplings between
two directions of motion, k. cubic type stiffness, k, hyperbolic type stiffness, c, damping, X, unloaded equilibrium position
(Q = 0), E average pressure, Q air flow.

Based on equations (1) the systematical approach to trace the behaviour of the system by varying one parameter
(in this case ¢) is presented. First the Hopf bifurcation points are obtained. Then periodic orbits which emanate from
Hopf bifurcation points are calculated. By tracing the evolution of the characteristic multipliers it is possible to observe
the changes of stability of these solutions and possibly further branching to resonance or quasiperiodic motion. This
technique is based on solving a boundary value problem using a shooting method (see BROMMUNDT [2], SEYDEL [3], STABEN [4]).

Calculations were made for the following fixed parameters: k, = 1; k, = 0.001; X, = 04; k,, = 0.3; k, = 0.001;
¢, = 0.5, E =04; k, = 0.3; @ = 10. We abbreviate the equations of motion to

h(z,z,n) =0, (2)
where: z = (x, x, y, y, p) and n is the vector of parameters. For the constant solution one obtains
k0,2,m)=0. A3)

Equation (3) was solved numerically by Newton’s method. In order to investigate their stability the differential
equations

Az = HAz (4)

should be solved (Az is a vector of small perturbations of the investigated constant solutions). When a pair of complex
eigenvalues of H crosses the imaginary axis with nonzero velocity Hopf bifurcation occurs and the new branch of periodic
solution is further calculated. Numerical integration yields the fundamental matrix the eigenvalues of which are the
characteristic multipliers.
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During the calculations the frequency w (t = wt) enters the equations as a parameter to be kept fixed when we
look at a special solution. Because the system of equations (1) is autonomous a phase condition x = 0 is prescribed in
order to fix the unknown frequency w. During numerical integration because of the nonlinear term x~*, the standard
methods based on the Runge-Kutta algorithm are not sufficiently accurate for integration of the considered stiff equations
system. A variable-order, variable-step Gear method was used.

The branching diagram for damping 0.0 < ¢ < 0.4 is presented in Fig. 2. The stable solutions are marked with the
continuous line, whereas the unstable with the dashed one. The previous stable steady-state solution becomes unstable
and the periodic limit cycle emanates from the Hopf bifurcation point H,. At this point a new periodic solution has a
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Fig. 2. Bifurcation diagram C

frequency which is equal to the imaginary eigenvalue obtained from (4). In the begining this solution is stable and further
undergoes the successive changes into subharmonic resonances. All marked bifurcation points are those of period doubling
bifurcation (one multiplier crosses the unit circle of the complex plane at — 1) except at the point P. At this point the pair
of purely imaginary multipliers crosses simultaneously the unit circle of the complex plane.

From the second Hopf bifurcation point H, branches the second periodic solution which is unstable. This solution has
changed its stability at the period doubling point. Two examples of periodic orbits calculated in a such way are given in Fig. 3.
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Fig. 3. Examples of periodic oscillations of the vocal cords: a) ¢ = 0.08, w = 1.2755; b) ¢ = 0.15917, @ = 1.41353. Note, that orbit (a)
has lower frequency compared with (b) and that both possess a cusp near y, = 0(y; = x; y* = y)

In some narrow interval of damping there exist two independent stable periodic solutions. It is possible to “jump”
from one to another.
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