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Two different scenarios leading from periodic orbits to chaotic orbits are traced,
based on the shooting method. Starting with the 1/2 resonance solution, the sudden
appearance of the strange chaotic attractor with increase of the static load, is dis-
cussed and illustrated. For this case the multiplier crosses the unit circle of the com-
plex plane at +1. When the load decreases however the solution first goes through
three successive period doubling bifurcations to the fourth subharmonic resonance.
This subharmonic resonance becomes particularly sensitive with further decrease in
the load and then the motion becomes chaotic.

§1. Introduction

A Duffing-type asymmetric oscillator
governed by the equation
X+cex+x3=qg+F cos wt, (1)

is reconsidered with the use of a numerical
technique presented in the next section. This
oscillator was investigated by Ueda.” He
presented strange attractors for w=1,
F=0.16, ¢=0.15, ¢g=0.03 and g¢=0.045.
These results were obtained using the
numerical method based on solving the initial
value problem. Szemplinska-Stupnicka and
Bajkowski? examined the behaviour of this
oscillator by means of an approximate
analytical method. The results obtained by
them were then verified by the computer
simulation analysis. In some cases, approx-
imate analytical methods allow one to find the
parameter space for which chaos appears
with reasonable accuracy (see Awrejcewicz”).
However, when the phase¢ flow is very con-
tracted and the bifurcations appear in a very
small interval of the investigated parameter,
the use of analytical approach to trace the
scenario leading to chaos seems to be impossi-
ble. Additionally, the numerical technique
based on solving the initial value problem is
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not only inconvenient, but also does not allow
one to trace the behaviour of the system in a
systematic way. For this reason this work is
concentrated on the numerical technique
which by the use of the shooting method and
by solving the resulting boundary value prob-
lem, allows one to trace bifurcations of the
periodic orbits examined.

§2. Method and Results

In this paper local bifurcations of periodic
orbits in the g parameter line are investigated
for the following fixed values of parameters:
¢c=0.15, w=1.0, F=0.16. The flow of (1) is
strictly contracted, which implies only the sad-
dle-node or period doubling local bifurcations
exist. Hopf bifurcation are excluded. We
assume that the frequency k 'w of the
periodic orbit we want to find is known. Let
y' be the initial point of an integration of the
considered eq. (1) which is sufficiently close to
a periodic orbit. If we integrate numerically
over an integration time of T=kw™'
(shooting), we can consider this procedure as a
mapping G(»'")=G". For the periodic orbit a
point y, has the mapping G(y,)=y,. In other
words, y, is a fixed point for this mapping. As
y is%only an approximation of y,, an error
E=y"—G" will occur. Employing a Newton-
Raphson procedure one can try to find the
zeros of the error function E.

The determination of stability is reduced to
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the analysis of the variational equations of
the non-linear system, which is a system of
linear differential equations with periodic
coefficients. This is true as long as a non-zero
variational (Jacobian) matrix J exists:
ay’
Ap=J(D)Ap=— ap, 2)
Ypl1)

where J(t+2nk/w)=J(t) and 4p is a pertur-
bation vector of the fixed point y,. The general
solution of (2) is

Ap=¢(1) 4 p(0), (3)

where ¢(t)=¢(t+2nk/w) is the fundamental
(Floquet) matrix. The characteristic equation

x(o)=det (Ms—a,)=0,

Mr=¢Q2nk/w)=—, 4)
-
yields the characteristic multipliers . My must
be determined by solving the system (2) along
a known periodic solution of the non-linear
system over T.

For the considered oscillator, in order to in-
vestigate the k-subharmonic solution, the in-
tegration interval of (1) is transformated to
2nk length and by the use of shooting it is
possible to solve the following boundary value
problem and to obtain multipliers from equa-
tions

MEM)(xlg X2, ¢)—x;=0,
X[ DM{m](Xl, X3, Q), J]ZO,

xX=x,x=x,i=1, 2. (5)

Above, M™ denotes the ith component of the
stroboscopic phase portrait (Poincaré map) of
(1) with the nondimensional time t=kcwt and
x is the characteristic polynomial whose eigen-
values g; are the sought multipliers of the 2kn
periodic Floquet matrix.® Calculations were in-
terrupted at the mth st€p, only if the following
norm IM{" —xl=ZIM™ —x;1*<107%. Two
multipliers are either real or complex con-
jugates. We will trace the movement of those
multipliers which accompany the change of q.

The main resonance solution is presented in
Fig. 1. As is seen from Table I, the increase of
q up to g=0.5 has almost no effect on the
behaviour of multipliers. However, for the in-
terval of g considered, another solution exists
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Fig. 1.
Table I.
Mulllphers
q x x 1 2
0.03 1.1406 0.65757 0.21; 0.83 0.21; —0.83
0.035 1.1432 0.66083 0.22;0.82 0.22; —0.82
0.04 1.1458 0.66408 0.21;0.83  0.21; —0.83
0.045 1.1483 0.66733 0.21;0.83 0.21; —0.83
0.05 1 0. 21, 0.83 0.21; —0.83

1509 0.67057

(see Table II). For ge (0.042385; 0.03913) this
is the 1/2 subharmonic solution. There are
two possible routes to chaos for this solution
(small orbit). The violent burst into a strange
chaotic attractor appears on raising ¢ more
than 0.042385. For this value of g the
multiplier crosses the unit circle of the com-
plex plane at +1 (a saddle-node bifurcation)
and suddenly another complicated structure
of the phase flow is born (Fig. 2). With decreas-
ing g, three steps in the subharmonic scenario
were observed. In all the three sequences of
doubling the period of bifurcations, each new
solution is stable over an interval smaller than
the interval of stability of the preceding
member of sequence. This observation leads
to the brief discussion of the compatibility of
results presented with the Feigenbaum Uni-
versality Constant.” Feigenbaum analyzed
noninvertible one-dimensional maps y,+1=
F;(y,), where A is a parameter. He showed
that there is a universal number given by
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Based on results of calculation given in Table
II the presented sequence of the doubling
period does not converge with the Feigenbaum
Constant (in our case d=0.5079). The Feigen-
baum universal number has been derived for
only one-dimensional maps and although
many higher real dimensional physical systems
have been found to possess this property,

q X X
Y e
0.042385 —0.26362 —0.13127
0.042382 —0.26156 —0.13080
0.042380 —0.26071 —0.13061
0.042000 —0.23492 —0.12428
0.041500 —0.22024 =0.12033
0.040000 —0.19277 —0.11227
9.039300 —0.18314 —0.10923
)
0.039190 —0.18173 —0.10877
0.039150 —0.18966 —0.10992
0.039110 —0.19487 —0.11066
0.039000 —0.20149 —0.11156
9.038300 —0.22495 —0.11436
)
0.03822 —0.226810 —0.11455
0.03815 —0.235540 —0.11602
0.03808 —0.214580 —=0.11210
9.03803 —0.21257 —0.11165
)
0.038029 —0.21253

—=0.11164

4263

there are also numerical examples showing
that in some systems a period-doubling
scenario is not compatible with the Feigen-
baum one.®

Decreasing a slightly further leads to for
g=0.037 a strange chaotic attractor (Fig. 3).

§3. Conclusions

Two scenarios leading to chaos in the
Duffing type oscillator are investigated with
respect to static load by solving the boundary
value problem. For the considered interval of
q there exist two independent (main resonance
and 1/2 subharmonic) solutions. The 1/2
resonance burts suddenly into chaos if, with in-
crease of the dimensionless static load g, one
of the multiplier passes through the unit circle
at +1 (a saddle-node bifurcation).

Increasing g draws successive subharmonic
bifurcations. However, starting with 32n
period the system is extremely sensitive to very
small changes of g, making further visualisa-
tion very hard. Already for ¢=0.037 chaos
has been found (note, that for g=0.038029 a
32 periodic orbit is born).

To summarize the results presented, it is
shown how in two different ways the 1/2
subharmonic solution (small orbit) can reach
chaos with changing g. With increase of g, the

11.
Multipliers

1 2 Period
1.0 ; 0.0 0.54; 0.0
0.78; 0.0 0.09; 0.0
0.72; 0.13 0.72;—0.13
0.27; 0.67 0.27;—0.67
0.00; 0.73 0.00;-0.73 4n
—-0.54; 0.49 —0.54;—0.49
—0.65; 0.00 —0.83; 0.0
—-0.54; 0.00 -1.0; 0.0
0.33; 0.0 0.87; 0.0
0.52; 0.10 0.52;—0.10
0.37; 0.38 0.37;—0.38 g
-0.70; 0.0 —0.40; 0.0 r
-1.0; 00 -0.27; 0.0
—-0.01; 0.24 —0.01;—-0.24
—0.28; 0.32 —0.28;—-0.32
-0.23; 0.0 —-0.88; 0.0 l6m

0.0

—-1.0; 0.0
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strange attractor appeared suddenly and the
previous periodic orbit disappeared. Contrary
to this scenario, another accompanying
decrease in g leads gradually to chaotic mo-
tion. Additionally, all of the subharmonic
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solutions obtained exist further only their sta-
bility has changed.

The main resonance (large orbit) has no in-
fluence on the behaviour of the small orbit and
is stable in the interval of g considered. The
transition between the main resonance and the
strange chaotic attractor is only possible with
a sudden change in initial conditions—
“jump’’ phenomenon. The paper was sup-
ported by the Alexander von Humboldt
Foundation.
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