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AN ANALYTICAL METHOD FOR DETECTING HOPF BIFURCATION SOLUTIONS IN
NON-STATIONARY NON-LINEAR SYSTEMS

1. INTRODUCTION

An analytical method is presented for determining the parameter-frequency relations and
the dependency of the bifurcation parameter on the other parameters for non-stationary
non-linear systems, including also the case when the system is excited by a periodie force.
This method is based on the combination of the classical harmonic balancing method
and the perturbation method. The perturbation technique has been described, for example,
by Malkin [1] and by Nayfeh [2, 3] and the particular perturbation techniques for
analyzing non-stationary non-linear systems with and without external periodic force
have been presented in references [4, 5]. A similar technique was applied by the author
[6] to determine the post-critical family of solutions after Hopf bifurcation in non-linear
non-autonomous oscillators with one bifurcation parameter, it being assumed that the
amplitude of the exciting force was small. An analytical approach to the bifurcation
phenomena seems to be important for two reasons. The bifurcations are the door to
chaotic behavior and full knowledge of these phenomena allows one to know more about
the occurrence of chaotic orbits. Secondly, and in any case during numerical integration
of the ordinary non-linear differential equations, sometimes the successful calculations
cannot be continued through a singularity which is often caused by bifurcations. In this
case an analytic treatment must be considered.

2. EXAMPLE 1 (WITHOUT EXTERNAL FORCE)

Consider a vibrating mechanical system with one degree of freedom—a rotor with
unequal moments of inertia of its cross-section, with its mass concentrated in its center.
The equation of motion of the system has the form

my +3(ky + ky+ (k, — k) cos 2wt)y + koy® =0, (1)

where m is the concentrated mass, k, is the non-linear rigidity, k,, k, are the rotor
rigidities, and w is the rotation frequency of the rotor. After a change of variable, a
dimensionless form of the equation is obtained,

d’x/dr?+(8%+ p cos 21)x + &x> =0, (2)
where
x=y(ki/ko)™"%, =0,  E=k/(mw?),
8 =3k +k)/mow®, =3k —k)/(k+k)w?

Equation (2) can be expressed as a system of two differential equations of the first order,

X1 =Xy,  X,=—8"x,—pux, cos 27— &x3, (3)
where x; = y.
The bifurcation solutions are sought in the form of a series in the perturbation parameter
¢ connected with the vibration amplitude, of the form

1_2_n

x;=x{+exi+re’x! +ixle i+ -, (4)
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and the frequency & and the parameter u also can be developed into power series in
the perturbation parameter,

8°=082+e8"+3e%8"+4e%8" +- - -, (5)
”=uc+suf+%e2#n+%€3“m+.__, (6)

where 82=n? and p. =0. After substituting equations (4)-(6) into equations (3) and
developing x{*’ into Fourier series, harmonic balancing is performed at & and sin nr,
cos nt, and the following is obtained:

Pirno= ~nPino, Pg;:o:"P:‘no- (7)
Then
x7=>((Pin0)’(3 cos nT+35 cos 3n7) +3( pSo)pino(sin 3n7 +sin nr)
+3(Pin0) Pino(cos nT—cos 3n7) + (pino)’G sin nr —1sin 3n1)). (8)
After harmonic balancing at £°, one obtains, for n # 2,

Pl

n°pinod” =3((Pin0)’+ (P1n0)’Pino),

1°P1n0d” =3((P1n0)’ + (PTn0) Pino)- (9)
The following is the solution of equations (9):
B'=Ppine=0,  84)=i(1/n*)é(pin)*: (10)
L'=pino=0, 80 =31/n")é(pia0)’. (11)
On the other hand, for n =2 the following is obtained:
Pio=8"=0,  u"=—%&(pi)% (12)
Pin=28"=0,  p"=—7%é(pin)’. (13)

3. EXAMPLE 2 (INCLUDING EXTERNAL FORCE)

Let now an harmonic force have an effect on the system considered in Example 1. In
this case the equation of motion has the form

my +3(k, + ko + (k, — k) cos 2wt)y + koy* = P, cos w . (14)
Let
=wt,  x=y(ki/k) % Ay =(po/ mw’)(ke/ k)",
&=k/(mw?),  8y=(ki+k)/2mw’,  py=(k—k)/2me?, /o=, (15)
Then equation (14) will have the form
dx/d77+ (8 + uy 008 27,)x + £,x° = A, COS W, 7, (16)
The system of two differential equations replacing equation (16) is
X1 =Xy, Ko = —85% = £,X]— pyX, €OS 27, + A, COS Wy Ty, (17)

where A, = €A,,. The Fourier series in this case is double and has the independent variable
nt, and lw,7,.
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Consider first the nonresonance case (lw, # n), where n, I € N. After harmonic balancing
at £ and sin n7,, cos nt, and sin lw, 7,, cos lw, 7, and after solving the algebraic equations
set one has

P3no0= —npao, P3n0= NP}no; (18)
Pi;n':P;;u:O, P'i';u:)*lf("z""zwi), Pgbi: "1)*1/("2"12001 . (19)
Then
X1 = (Pin0)’G cos 7y, +3 cos 3n7,) +3(Pino)Pino(sin 3n7, +sin nt,)
+3(Pino)’Pino(cos nry —cos 3n7,) + (pin0)’G sin nt, —3sin 3nty)
+3(P5n0)°Pior €08 lw 7y +3(PF o) Ploi(cos (2n +lw, )7, + cos (2n — lw,) 7,
+3P n0PinoPior(sin (2n +lwy) 7, +sin (2n — lwg) 7,) +3( P} o) Pior €08 lw, 7,
~2(P3n0)’Pioi(cos (2n+ lwy) 7, + cos (2n — lw, ) 7,)
+3P5no( Pior)? €08 N7y +3p50( pio)’(cos (n+ 2w, ) 7, + cos (n —2lw,)7,)
+3P3no(Pior)’ sin 7y +%Pi;a(}ribs)2(sin (n+2lw,) 7y +sin (n —2lw,)7,)
+(p5o)’ G cos lwy 7, +5 cos 3wy 7).

When comparing the terms at orders &’ and sin nry, cos nr,, as well as at sin lw, 7, and
cos lw, 7, one can obtain u"” and 8" and thus finally, for this case,

p =0,

1 ' ! ' - - c’ s’ c'
8= %f (F (%( P:n0€)2+%(,0fnof)2 + (Pfo:-‘i)z) +1 2‘-0*2(( Pmog)2 +(PinoE )2 +%( leé‘]z))-

(21)
Let
PinoE = A cos @, Pino€ = Asin ¢. (22)
Then the following are obtained from using these expressions (22):
p =0,
A As & o. (23)

+ — -
2n*Pwl/(Pwi+2n%) 2(n*-Pol)lPwin’/(QPwi+n?) 3¢

The second of equations (23) has a geometric representation as a quadric surface—a cone.

The parametric forcing occurs when either n#1 and n=w,l, n=1 and n# w,l, or
n=1= w,l. Consider the last most complex case of resonance. Let the following connec-
tions occur:

Y Pol-1=a’, A,=¢’A,, (24)
where a’ = £’a. Then, by proceeding as in the previous case one obtains
AZ
(2/36)
Equation (25) is the equation of hyperbolic paraboloid.

8%/ (@y/2) ~ 2(py —a’). (25)
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4, CONCLUSIONS

An analysis of the Hopf bifurcation in nonstationary non-linear systems exemplified
by the Mathieu-Duffing oscillator has been presented. Considerations have been limited
to determining the parameter-frequency relations and the dependence of the bifurcation
parameter on the other parameters of the systems. The method of development into series
of the perturbation parameter connected with the vibration amplitude (on the assumption
that it is a small quantity) and the method of harmonic balancing have been employed.
Cases with and without external force have been considered. For the latter case, with the
vibration far from resonance, the vibration amplitude A, the amplitude of the excitation
force A, and the frequency &, create a quadric surface, which is a cone. On the other
hand, for vibrations near resonance, the frequency 8., the vibration amplitude A, and
the parametric excitation factor u, create a surface of the second degree, which is a
hyperbolic paraboloid.
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