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Summary

This paper presents an analysis of new dynamical phenomena using the example
of the simple nonsymmetrical anharmonic oscillator. Strange attractors are detected
near the critical values of parameters obtained earlier using an approximate analytical
method. Long transitional chaotic phenomena, sudden qualitative changes in chaotic
dynamics with evolution of chaotic attractors are discussed and illustrated.

1. Introduction

A minimum of three dimensions is necessary to observe chaotic behaviour.
To these simple systems belong various periodically forced nonlinear oscillators.
Beginning with the pioneering works of Holmes and Ueda, there have been
repeated successful discoveries of chaotic behaviour in anharmonic Duffing
and van der Pol-Duffing type oscillators [1]—[6]. Often, the transition to chaos
in forced oscillators is connected with a sequence of successive bifurcations
which precede these irregular motions. Ruelle and Takens were the first to
suggest that strange attractors could arise after a finite sequence of bifurcations
and might provide models for complicated irregular motions. The scheme which
1s given by Ruelle and Takens [7] shows how after three, two or even one Hopf
bifurcation, the system can undergo a subsequent transition to chaos. The theory
was confirmed by experimental investigations in hydrodynamic systems by
Gollub and coworkers [8], [9]. Similar results are obtained in an optical system
[10].

In this paper, an anharmonic nonlinear mechanical van der Pol-Duffing
type oscillator with an-exciting force whose amplitude is proportional to the
second power of the exciting frequency and a constant load is analysed. The
static load causes nonsymmetry of the system which results in a higher probabi-
lity of creating higher order resonances and accompanying irregular motion. We
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will show that chaos appears after the bifurcation of the stationary state with
one and two frequencies. Also, based on the example of this simple nonlinear
oscillator, new dynamical phenomena are presented.

2. The Analysed System, Bifurcation of the Stationary State
with One Frequency and Numerieal Results

We consider an oscillator governed by the dimensionless equation

§— (B —0y®) 9 + oy + ny® = q + n® cos nt. (1)

The motion of the oscillators, where the rotation of an unbalanced disk or wheel
becomes the source for the exciting force, can be reduced to Eq. (1).
Assuming that the stationary solution has the form
y=Y + Acosyt + Bsinnt, (2)

we obtain from (1)

Y(a+,u(yz+%1>2))-—q=o,
B(rx—nz)—An(—ﬁ+6(1’2+%1’2))+3uB(Y2+%P2)=0, 3)

(g o(rs L) (e L) pmo,

where P = (A% + B?)!?is the amplitude of vibration. The perturbated solution
of (2) is

Yp=Y + A4Y + (A + AA4) cosnt 4 (B + AB) sin nt. (4)
Assuming that perturbations 4(-) and damping coefficients f and ¢ are small,
we obtain '

—2n(44) + T(44) + U(4B) =0, .
29(AB) + V(44) + W(AB) =0, )

where

3 1 3
T=pn—néY? —ZﬁnAz—IGr;Bz—l—EyBA,

3 9 1
U=x—n*+4 3uY? +'ZFA2+Z#32—‘2“5’?AB,
(6)

. 1
V=0‘—??2+3ﬂY2+—j“ﬂAZ+;ﬂB2+§-5ﬂAB,

1
W= —Bn + on¥? + — onde + —z-énBﬂ + %;;AB.
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At the bifurcation point we have
W—-T=0, (7

and

UvV — TW > 0. (8)

Consequently, we obtain the set of Eqgs. (3), (7) and the inequality (8). In order
to obtain the bifurcation curves u(n) we solve those equations for arbitrarily
chosen parameters «, 8, §, ¢g. Suppose, that we have found the Hopf bifurcation
curve u(n). For the parameters lying on one side of this curve the real parts
of the eigenvalues of (5) are negative (positive) whereas for the other side they
are positive (negative). For each point belonging to this curve we have a corres-
ponding stationary state with Y5 and amplitudes Ay, By. After crossing this
curve from negative real parts to positive real parts of the parameter plane
with nonzero velocity a Hopf bifurcation appears. Our considerations are valid
for the averaged system of the equations after substituting (2) and (4) into
(1), and, additionally, we investigate only the local bifurcation of Hopf type
(see also [11]). This bifurcation in the averaged system of equations is related
to the bifurcation of the solution (2) in Eq. (1). We finally obtain the conditions
necessary for a bifurcation of the stationary state with one frequency.
- Solutions of (3) and (7) are found using Newton’s method. Sample curves
obtained in this way are shown in Fig. 1.
The considered system of algebraic nonlinear equations can possess one, two
of three equilibrium paths. It depends on the parameter values. In Fig. 1a we
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Fig. 1. Bifurcation curves for the one-frequency solution
a)f=01,=01,¢g=10; b)f=01,a=0.1,9g=30
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750 ¢

Fig. 1.b)

show that for x = 0.1 and x = 10.0 we have in each case two bifurcation curves.

For parameters near the critical values, we integrate Eq. (1) numerically
by the Runge-Kutta method with the step size A = 27/50n and with the initial
conditions %(0) = 0.0, #(0) = 1.0. The results are presented in the form of Poin-
caré maps and frequency spectra. The Poincaré maps consist of 2000 points.
These maps are calculated starting with time ¢ = 1007 (T' = 2z/n), for which
the trajectories finally reach the attractor. The Fourier spectra are obtained
using Fast Fourier Transform and are presented in three-dimensional form.
A decimal scale has been adopted for amplitudes, corresponding frequencies
and time. The solutions have been analysed starting from ¢ = 1007" and then
we have obtained the Fourier components of the motion repeating the analysis
of each interval of 3007. This method of calculation of the Fourier spectra
allows us to observe the development of motion and to trace the evolution of
the Fourier components with time.

Consider the behaviour of the system near the bifurcation point P, in the
Fig. 1a. Figure 2 demonstrates sudden changes in nonchaotic and chaotic
dynamics as parameter 8 is varied. For f = 0.08 we can observe very long,
transient oscillations which finally reach the nonchaotic attractor, indicated
by the stable fixed point # on the Poincaré map. After a long transient state,
a periodic motion with the frequency of the exciting force remains (¥ig.2a).
When B is slightly increased (Fig.2b; g = 0.085) transient chaos occurs. The
development of the power spectrum testifies this. The chaotic motion of the
system lasts until £ = 8007". In the time trajectory the two broad-band regions

of frequency near of 5 and 37 are evident. The transient chaotic motion then

gradually changes into a regular two-frequency motion with frequencies % and
2n. A clearly dominating component is the frequency of the exciting force.
With further increase of B, the transitional phenomena become longer and
suddenly, for the critical value of B, the fixed point stability is altered and the
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trajectories shift away from the domain of the previous attractor (Figs. 2¢, d).
Additionally, inside the area of this strange attractor there exists a space which
does not contain any points. This space was previously covered by the points
of the Poincaré map presented in Fig.2a. For g = 0.098 we observe again
the long chaotic transitional phenomena and then for ¢ > 10007 the points of
the Poincaré maps are lying on the closed curves. Because the corresponding
frequency spectra are discrete (with two components) the corresponding attractor
is quasiperiodic. With very small increase of # (8 = 0.1) the chaotic transitional
phenomena do not appear and a quasiperiodic attractor is clearly visible. As
can be seen in Fig. 2f, we have two frequency components w, = 12.3, w, = 16.7.
For f > 0.1 (more precisely g = 0.11, § = 0.12) no changes have been found
in the behaviour of the system.

Comparison of this results with the ““crisis phenomena’ suggested by Grebogi
and Ott [12] provides an interesting insight. The authors define a crisis as a
collision between a chaotic attractor and a coexisting unstable fixed point.
They distinguish two types of ““crisis”, the ‘““boundary’ and the “interior” crisis.
The first leads to sudden destruction of the chaotic attractor and its basin of
attraction, while the second can cause sudden changes in the size of the chaotic
attractor. In our case however one can observe another phenomenon. First we
have obtained a fixed point on the Poincaré map and then a very long chaotic
transitional phenomenon has appeared which for the further increase of § changes
into a strange attractor. This provides the evidence for another new unique
“crisis” type different from those analysed by Grebogi and Ott, where the changes
of stability of the previously stable fixed point cause the shift to irregular motion.
Now we can consider the new attractor of mixed type containing both a co-
existing, chaotic attractor and an unstable fixed point. With further increase
of 8, another crisis occurs and leads to both the destruction of a strange attractor
and creation of a quasiperiodic attractor.

We have analysed the evolution of Poincaré maps with the change of the
nonlinear rigidity coefficient u, the other parameters are: o« = f =4 = 0.1,
n =18, ¢ =1.0. For u = 40.0 we have discovered regular motion with one
frequency equal to 7. With further increase in u the transitional phenomenon
becomes longer and longer. Increase of u to the value of u = 65.0 results in
chaos. Then for u = 68.5, a two frequency motion is observed.

Evolution of the motion with change in é has also been analysed (x = § = 0.1,
u=169.17, n =18, ¢ = 1). For 6 = 0.12 we have found the stable fixed point
on the Poincaré map. With a slight decrease of 6 (6 = 0.115) the previous stable
point became unstable and chaos appeared. Inside the area of the strange attractor
there was a domain_ without points. This domain was previously covered by
points of the attractor for § = 0.12. With further decrease of J (for § = 0.11)
we have obtained a “weak’ chaotic attractor. Then for é = 0.09 the motion
becomes regular and a quasiperiodic attractor with two frequencies appeares.
For the results of the numerical analysis (for the parameters near point P,)
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we have marked in Fig. 3 the regions of chaotic motion. It can be seen that chaotic
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Fig. 3. Regions of chaotic motion for parameters near the point P,

Finally, we have investigated the route to chaos for parameters of the system
placed near the bifurcation points R,, S,, 7. For parameters near the point R,
(0 =10, f=0.1, 6§ = 0.3, n = 1.6, ¢ = 3) the evolution from regular motion
(¢ = 14.3) through chaos (u = 14.35—14.45) to quasiperiodic motion (u = 15.0)
was observed.

For parameters x = 1.0, # =0.1, 6 = 0.3, n = 5.6, ¢ = 3 (near the point
S,) and u = 135 there are four frequencies in the motion, but the magnitude
of the amplitudes corresponding to these frequencies evolve with time and the
Poincaré map has a complicated structure. Frequency spectra are more broad-
band and the corresponding amplitudes vary in time for 4 = 137. With a further
increase of u (¢ = 139) a quasiperiodic attractor appeared.

For a set of parameters near the point 7y (x = 1.0, § = 0.1, = 0.3, » = 10.0,
g = 3.0) we have observed transitional chaotic phenomena at u = 440.0, and
then, for 4 = 442.0 and pu = 443.0, appearance of the strange chaotic attractor.
For u = 446.0 chaotically transitional phenomena occured for ¢ < 9007. For
t > 9007 we obtained the quasiperiodic attractor with three frequencies.

It is interesting that all strange chaotic attractors discovered possess a hori-
zontal axis of symmetry.
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3. Bifurecation of the Stationary State with Two Frequencies
and the Numerical Results

We assume that the stationary solution has the form
y=Y + Acosnt + Bsinnt + R cos Q¢ 9)

where £ is the dimensionless frequency of self excited vibrations. From Eq. (1),
taking into account (9), one can obtain the nonlinear algebraic equation set,
as described in Section 2.

Considering the perturbated solution of (9)

yp=Y + AY + (4 + AA) cos 5t + (B + AB) sin 7t

(10)
+ (R + AR) cos 2t + Ax sin ¢,

and assuming that the values of the coefficients 8, d, A- are small, one can obtain
the linear set of differential perturbation equations. The characteristic equation
has the form

167?292114 + S-Q"?((cu — C33) M + Q(ce, — 311)) A3
+ 4(7}-9(011 — Ca3) Caz + £2%(C12C21 — C€11C22)
+ ??Q(Caaczs — €13C31) + 7?2043034 — ??Cu('??cas + Q(c,, — sz))) A2

+ 2 (Q(Glscmcaz 4 €12C23C31 — C13C22C31 —+ €11C22C33 — €12C21C33 — C32C23Cy;)

(11)
+ ?}'034(022043 + €13C41 — €11C43 — C23C42)

+ Cu(??(cn — €22) C35 + £2(C12€2; — €11C22) + 7(C32C25 — 013031))) A
+ €34(C12€21Ca5 + €11C23Ca2 1 C13C22C41 — €13C21C42— C12C23Cq1 — €11C22Cq3)

4 €44(C13C21C32 + €19C25C51 + €11C22C55 — C12C21C35 — C32C23C11 — C13C22Csy) = 0,

where c¢;; (7,j = 1, ..., 4) depend on the parameters and Y, 4, B, R, Q.

The necessary conditions of the existence of a Hopf bifurcation point is
the existence in Eq. (11) of two purely imaginary eigenvalues, whereas all other
eigenvalues have negative real parts. The full system of bifurcation equations
in this case we obtain by assigning the expressions for 1%, 2% and 4 to zero while
the last expression ought to be greater than zero. Unfortunately, using this
technique we are unable to find bifurcation curves, but we have found two
isolated solutions. In the first case the critical parameters are: « = 0.05, g
= 0.019, ¢ = 0.00253, u = 6.274, n = 0.1218, § = 0.4. Hopf type bifurcation
takes place by changing the é parameter. From numerical experiments we have
obtained for 6 = 0.4 a periodic motion and, with further increase of this co-
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efficient, we can observe many bifurcations which lead to subharmonic and
quasiperiodic motions. In this case we have not detected chaotic motions.

The second example is presented in Fig. 4. For § = 0.6 one can observe
quasiperiodic motion and, for 0.6 < < 0.7 Hopf bifurcation of the stationary
state occurs. We have presented in Fig. 4b the chaotic transitional phenomena
which persist to 1400 periods and then converge to one point (the map has 2000
points). For 6 = 0.76 the situation is similar to that previously described but
suddenly, for 6 = 0.762 (see Fig. 4d), the stable fixed point vanishes and two
new, stable symmetric points appear. Tt is strongly evident that the new, stable
fixed point appears in the middle of the domain previously free of points and,
further, that new domains free of points inside the attractor are located at the
same place where, earlier, the single fixed point was lying. Generally the shape
of attractor remains unchanged during changes of 4.

Therefore, using the example of this simple anharmonic oscillator, we have
detected a new phenomenon indicative of the simultaneous coexistence of one
stable and two unstable fixed points with long transitional chaos. For 0.76
< 8 < 0.762 bifurcation appears so that the stability for these three points is
changed with the previous one stable point becoming unstable and the two
unstable becoming stable. However, this change of stability of the fixed points
appears to have no'influence on the transitional chaotic phenomena because
the shape of the Poincaré map remains unchanged. With further increase of
o the chaotic transitional phenomena become shorter and shorter. During these
changes, however, the two stable fixed points remain at their previous positions.
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Eventually, the transitional chaotic behaviorour disappears (Fig. 4e) and we find
two stable fixed points. The changes in the behaviour of chaotic transitional
phenomena have no apparent influence on the other stable fixed points and vice
versa.

4. Concluding Remarks

The aim of this work is to provide a method to discover strange chaotic
attractors and subsequently, to observe new nonlinear dynamical phenomena.
Using an approximate analytical method, we have obtained a set of bifurcation
equations, assuming that bifurcation of the stationary regular motion with one
and two frequencies takes place. In the former case we have determined bifur-
cation curves, while in the latter we have found only two isolated solutions.

In the first case we have presented some examples of strange chaotic attrac-
tors. All of them possess a horizontal axis of symmetry even though the static
load in the considered equation was expected to cause nonsymmetry.

In Fig. 2 we have shown how with the changes of stability of the previously
stable fixed point the long chaotic transitional phenomena shift into a chaotic
attractor. This new complex attractor can be considered as a mixed one in which
a strange chaotic attractor and an unstable fixed point coexist.

We have described a route from a periodic motion to an irregular one with
the change of the nonlinear rigidity u. With the increase of u chaotically tran-
sitional phenomena last longer and then a strange chaotic attractor appears.

The analog scheme of transition from regular to irregular motion is also
presented when we have discovered chaos by changing the parameter §. Similar
as in two earlier cases inside the domain of the strange attractor there is a region
without points. This space was previously covered by the points of the stable
attractor, which now is unstable and coexists with the strange chaotic attractor.

With reference to bifurcation of the stationary state with two frequencies,
two isolated critical values of the parameters were found. For the first set many
bifurcations appear with a variation of the coefficient 6. However, this does not
lead to chaos. Near the second set of bifurcation parameters analysed, the evolu-
tion of simultaneously coexisting stable and unstable fixed points with chaoti-
cally transitional phenomena (Fig.4) is detected. This evolution shows that
fixed points and these transitional phenomena are ‘“‘uncoupled” in the sense that
changes in one behaviour do not have any influence on the other. In our in-
vestigations we have used the discrete power spectrum. It has allowed us to
observe the evolution of the Fourier components with time.
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