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1. Introduction

Physical systems governed by nonlinear differential equations at least of
third order, where chaotic motion was detected, are widely described in the
literature (see, for example, references [1-13]). There are so many studies of
nonlinear dynamics in simple systems because they provide the advantage of
a less complex analysis of the behaviour of strange attractors. Another
reason is that similar behaviour sometimes is likely to be met in complicated
systems. Chaotic orbits, however, have usually been sought in a random
way and it is difficult to present a general method to discover them.

Ruelle and Takens [14] have shown that strange attractors could arise
after a finite sequence of bifurcations which cause complicated irregular
motion. This idea has been used here, first to detect analytically bifurcation
curves based on the approximate Van der Pol method, and then to prove
numerically the existence of chaotic motion near the bifurcation curves.

2. Analysed system and Hopf bifurcations

The equation of motion for the analysed is
M3 + (c3x2 — ¢))x + kox + k1 x® + poMg sign x = Py(1), (1)

where Py(f) = aumv? cos vt. This model describes a mechanical oscillator with
Van der Pol type damping and Duffing type stiffness, where the exciting force
Py(?) originates from rotating engine rotor with the mass m and the unbalance
p (“a” 1s the amplification coefficient). From (1) we obtain

y =z, N

. . . 2
z=¢(1—=y?)y —dby —yy> —asign y + pev? cos vt, (2
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where

y=(crfc))'"?x, e=c)/M, 6=ko/M, y=(kic)/(Mc,),

o = pag(ca/c))'?,  po = (aum)/(M(cy/c,) ~'7). (3)

The approximate analytical method of Van der Pol is used to solve the
system of equations (2) assuming that

y = u(t) cos vt — v(t) sin vt,
(4)

z= —v(u(?) sin vt + v(t) cos v?),

where u(t) and v(¢) are slowly changing functions of z. After substituting
equations (4) in (2) we obtain

u = N sin vt,

(5)
v = N cos vt,
where
N = (0 —v?)v~"(u cos vt — v sin vt) + ev ~'(u cos vt — v sin vi)>
+ &(1 — (u cos vt — v sin v£)?)(u sin vt + v cos vt)
+% sign( — v(u sin vt + v COS vt)) — pov COS VL. (6)

The right-hand sides of Eq. (5), being periodic functions of ¢ with the period
2n/v, are expanded into Fourier series. Taking into consideration that both
u and v are slowly changing functions of ¢ and that only the first terms of
the expansions are significant the following averaged system of equations

U= — > v+§u—§u(u2+vz)*gv(uz"'vz)—nv(uz_{_vz)wz’

(7)
. 0—v? € . 20w vPo
v= o u+§v—§v(v +u)+8vu(u +U)‘“nv(uz+vz)u2 2

is obtained.

In this paper we follow the method of slowly varying variables, which
was used to obtain Hopf bifurcation curves of a particular forced Van der
Pol oscillator by Arrowsmith and Taha [15]. Assuming that

5—v: 3y 20
w = 5 8—8, g—l, E—l, (8)
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we obtain
U= — v+ 4u —u@®+0v?) — o>+ v —u(w?+ 0?2

9)
v =owu +4v —o(u® +v?) + u(u? +v?) —v(w* +0v?) " "? - P, (

In order to determine the Hopf bifurcations, the terms of Eq. (9), containing
the square root, are expanded into Taylor series around the point of
equilibrium (u,, v,). The expansion is limited to linear terms in « and v. As
a result, we have
. Uy
u=—wv+4—w+vHhu — W+ — —5—5-5
(4= @+ 0 = (4 0% = B

2
Uo Uplo
NI (u - uo) +
o) (

S — ———— (v — v,),
(ug+v u%+v%)3”2( )

(10)

Vo

:3=wu+(4—(u2+v2))v+(u2+v2)u—mm

Moo —v0) + " (u— ) — P
— T A . war - A2 Aa.an u— - .
@s+09) " Wi+

Let us now proceed to the new coordinate system (u’, v”) whose origin is the
singular point (u,, v,). From Eq. (10), after linearization, we obtain

2
. Vo ,
u' =\4—3uj—v§—2uwo — —5—>33 35 U
(up + v3)

Uglp
4| —w —uy— 303 —2ugvg + ————5 v,
( 0 0 070 (u%+v§)3’2)

(11)
Ul
3 +3 2+ 2_2 + ovo ’
v ((D Uy 2 Uglg _—'_"—‘—_‘_(u%+v(2))3f,2 u
u2
4 —ud— 3024 2uwy — ————5 v
+ ( uy— 3vg + 2ugvy (u%-{—vﬁ)m)v
The characteristic equation of (11) has the form
6>— (A + D)6 + AD — BC =0, (12)
where
A=4—-3u%—v2—2uw v—g
- 0 0 0ov0 (ug+ 03)3;’2’
Uol
B = —w—uﬁ—3v§—2u{)vo+m,
0 0 (13)
~ Uglg
C=w+3ul+v3—2upe + ————5,
0T S T T o
U

D=4 —ul— 303+ 2upwy — ————.
0 0 Ul (u(z)+v%)3;2
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In order for the Hopf bifurcation to exist, it is necessary for the roots of the
characteristic Eq. (12) to be strictly imaginary. This leads to the set of
bifurcation equations
1 2 2

4ul+0vd)? 2 g+ 0o),

Uy _
(ug+v3)"?

Vo

i +v) "
This set of equations, after replacing the cartesian coordinates (ug, v,) by
polar ones (ry, ®,) acquires the following form

4?"0(2 - r{%) = 19

—wry sin @y + (4 — rd)ry cos Oy — rj sin O, — cos O, = 0, (15)

—wvo + (4 — (U + v8))uy — (ug + v3)vy — 0, (14)

wuy + (4 — (U + vd))vo + (U3 + v3)uy — P=0.

wro cos g + (4 — ri)rq sin Oy + r3 cos @y —sin @, — P = 0.
From the first equation of (15) three values of r, are obtained:
roo =1.347, rp,=0.126 and ry;= —1.473.

After substituting these values into the other two equations (15) three
necessary conditions for the Hopf bifurcation are obtained

P?= 1814w+ 6.50w + 2.274,
P?=0.016w2+ 0.001w + 2.01, (16)
P> =217w? + 9.4150 — 34.409.

Fig. 1 presents the Hopf bifurcation curves. Because of the symmetry of the
equations with respect to P, the figure only presents the half plane P > 0.
The bifurcation curves marked in Fig. 1 as 1, 2 and 3 correspond to the
values rg,, ro, and ry;.

3. The evolution of strange attractors

Equation (1) was solved numerically using a variable-order, variable-
step Gear method. In this method the accuracy of the integration and
interpolation is controlled. If the appropriate condition is not satisfied, the
stepsize is reduced. Numerical results are presented as phase portraits and
Poincaré maps. The first digital integrations run for a long time (about
300 s) until all transients have decayed. Then y(r) and jy(f) are recorded
either in the short time, to present phase trajectories, or are recorded to the
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a-d
r
Figure 1 T
Hopf bifurcation curves obtained using an analytical -24
method.
Table 1
e=8,p,=1
Figure 2 (w, p) 5 y a v
a (—13.25,13) —13.
b (—12.25,13) 39.
¢ (—11.75,13) 65. 69.33 40.84 26.
d (—10.25, 13) 143.
€ (—15,16) 64.
f (—14,16) 128.
g (—13.75, 16) 144. 85.33 50.27 32.
h (—12.5, 16) 224

time 16007, where T = 2= /v, in order to obtain Poincaré maps. Because of
relations (8) it is possible to observe the behaviour of the system using only
two parameters (see Table 1). It must be taken into account that the
behaviour of the system changes if we cross through the bifurcation curves
when changing one of the two parameters. Generally, chaotic orbits near the
bifurcation curves 1 and 3 were found, while near the bifurcation curve 2
regular orbits were found.

Consider the two sets of parameters presented in Table 1 and marked
also in Fig. 1. Based on the numerical calculations, two possibilities of
evolution of the strange attractors will be analysed. In the first case (Fig.
2a—d) for the fixed values y, « and v the coefficient 6 is increased. It
corresponds in the two parameter plane (P, w) to increases of the parameter
o for the constant value of P. In Fig. 2a the strange attractor for 6 = —13
is presented. Increase of the stiffness coefficient causes the decrease of the
area covered by points of the Poincaré map. For 6 =143 (Fig. 2d) the
chaotic dynamics of the phase flow are not as strong as in cases presented
in Figures 2a—c. The Fourier spectra presented in Figs. 3a—d are broadest
for the parameters which correspond to the Poincaré map presented in Fig.



ZAMP

J. Awrejcewicz

380

1250

0.00

-12.50

-25.00

100.0

°
&

-100.0

-1.0 0.0

-2.0

=30

375

2.50

-2.50

-3 75

2
P
Y

B
.w\

0.00

-1250

-25.00

100.0

0.0

-50.0

-100.0

-1.0 0.0 1.0

-2.0

=30

175

-2.50

-375

1250 |

0.00

-12.50

-25.00

100.0

-100.0

0.0 0.5

-0.5

=1.5

=25

irs

250

-2.50 -1.25 0.00

-7
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Figure 2
Phase portraits (left) and Poincaré maps (right) for the parameters as in Table 1 (y, = x, y, = X).

2a. Increase of the é value causes the decrease in the magnitude of the
strange attractor, and the corresponding frequency spectra become narrower
and smoother.

One can expect that the situation radically changes when another set of
parameters is taken into consideration. In the second example the amplitude
of the exciting force is equal to 1024 (note that for the first presented
example it was 676). As in the previous case, keeping P constant and
increasing w, o is increased. As shown in Fig. 2e-h the increase of é causes
a decrease in the shape of strange attractors. The shapes of the correspond-
ing Fourier spectra presented in Fig. 3e-h become narrow and smoother
with the increase of . The evolution of this strange attractor is very similar
to that presented in the first case. The area covered by the chaotic orbits in
this case is very close to those presented in Fig. 3a—d. It means that in both
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Figure 3 (a)—(c).
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Figure 3 (d)—(f).
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considered cases the evolution of strange attractors is similar even if the
considered parameter sets differ considerably from each other.

4. Concluding remarks

In this paper a new phenomenon of chaotic dynamics is presented. First
an averaging method is used to obtain Hopf bifurcation curves for the
system of equations (5), and then the behaviour of a system near the
bifurcation curves is analysed. It is shown, that the evolution of strange
attractors with increasing values of the stiffness coefficient J is very similar
even if the considered parameter sets differ from each other.
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Abstract

The Hopf bifurcation curves for the averaged system of second order differential equations are
obtained using an analytical method. Numerical experiments have proved the existence of chaotic motion
in the vicinity of these curves. For the different parameter sets, two very similar types of evolution of
strange attractors are presented.
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