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Abstract—The paper presents a method of determining the unstable zones of mechanical systems
circumscribed with the ordinary non-linear differential equations with periodically variable
coefficients, on the assumption that the parametric excitation and non-linearity in the system are
small (of the order of small parameters ¢ and ¢). In this method the solutions are searched in the
form of power series in relation to two small independent parameters p and &.

INTRODUCTION

The small parameter method, consisting in the searching for a solution in the form of
power series in relation to a small parameter has been successfully applied in solving the
ordinary non-linear differential equations with constant coefficients or linear differential
equations with periodically variable coefficients [1]. Other authors [2] have applied this
method to the unstationary non-linear mechanical systems, artificially conditioning other
parameters on the small one.

This paper presents the method of determining the limits of the loss of stability for the
non-linear and unsteady mechanical systems by assuming two small independent parameters
and searching for a form of solution which, after equating one parameter to zero, is reduced
to the classical method described in [1].

, The general procedure for determining the unstable zones of the discrete material systems

with a finite number of degrees of freedom has been presented for the system of non-
linear differential equations with periodical coefficients of the first order, whereas the
computational examples have been presented for the parametric non-linear systems with
one or two degrees of freedom.

THE METHOD
Let us consider the system of equations having the form:

dx,
d_t =dag Xy +...+ asnxn + )u[fsl[taﬂ)xl + ... +fsn(tnu)xn] + BF,(X]_,...,X,,} (1)

where:

fsi(t.u) = £3(0) + pfsi(t) + p*fsi?(0) + ...
f5i%(t) = fsi% + T), s=1,...,n, j=1,...,n, k=1,2,...

The quantities x4 and ¢ are small parameters (not necessarily of the same order), while the
functions f;; (t,u) can be represented as a power series of a small parameter and are
periodical with their period T.

Because for ¢ = 0 the characteristic exponents of the system (1) are the function of p,
then for ¢ # O let us search for them as a function of two small parameters x and ¢, having
the form:

x4 = ;'i + ai{p'! E)a (2}
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assuming at the same time that /; are single imaginary characteristic roots of the system
obtained from (1) after assuming u = ¢ = 0, of the form:

dx

s

—— =a, Xy + ...+ AyX,. 3
T 1X1 s (3)

We shall assume that the forcing of ¢F; is so small that there exists a particular solution
of (1) having the form:

x(t) = el atnor, 4)
where y(t) is a periodic function (having the period T for ¢ = 0), whereas

afu, &) = pal™" + p2al*® + ..+ ea®V + pal™V + ) + 2@l + pal* P + .. )+ ...

(5)
After substituting (4) and (5) in (1) we get:
dy, . ,
A = Gt agyn  plfSIG Yyt Sen(e wya] — LA a2y
+ ge~Vitamal g [elhitatmaly,  elhi+atmol), 1 (6)

where y(t) is a periodic function.
The solutions of (6) will be sought in the form:

ylt) = ¥ + w0+ L+ e+ Y+ )+ 200 P )+ (D)

After equating the expressions representing the same powers of the small parameter x4 and
¢ and the same powers of their products u™e! (m,1 = 1,2,...), the recurrent systems of
linear differential equations are obtained, which have the form:

dy{>? 0.0 (0.0 (0,0
Fs )
df = asly(l ) + asny ) — y L]
dy“"’ 0 10 1.0 0()y00 4 (0)( £},,(0.0) nm (0,0)
1
dl - asiy[l ) snyfn : “ }’( ) + [ﬁlt (t)y +fSﬂ [t)y ys
d}’{z'm 2,0 2,0 (z 0 (0,0) ,(2,0) (1,0) ,(1,0)
5
TR E + L+ agy? - "=y %%t — iV
+ L1V + .. + fsn“’{r)y“’ O + LAWY + .+ fon D)y,
dy‘° D 0 0. 0 Ait, (0,0 it (0,0
dt = asly(l el sn}’L D — Ay + Fle!y P9, .. e “yf. 7, (8)
dyitV 1.1 (1.1 (L) _ g{L10.0) _ 4(0.1),(1.0)
5 .
-T:a“y(l }+ e A Vp '’ ) }ys ) — Vs —a Vs
+ Fs(eiii‘y[’o.(}) e/lll'}l‘l 0) i:ryio 0] ;.lryLl .0]),
dyzb 2.1 2.1 2.1 2.1),,(0.0) _ (1.1),(1,0)
(;f = aslyll ) + .. sny::'l ) — }’( ) GE ' ]yi e ag Vs

2.0 0.1 1,0 1,1 Alt (0,00 St (1,0) SAir (O, 1) LAir (1.1)
— a0y 0D — gthOyD 4 Ferip(0-0) ehity(1-0) ghity(0:1) ety (L

0.0) it (1,0) ndir, (0,1) Ldit (1.1
. eHI(0.0) ity (1.0) @it (0.1) ity (1.1

3
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The particular components of the expression (5) are determined from (8) from the
condition of avoiding the secular terms, putting

et = et = cos It + isin Zt.
It is known that the unstable zones are found near such frequency of parametric

o 2n . At 4
excitation w(T = —), that the connections + w =—"—§—‘ are fulfilled. In that case, the
w i
characteristic roots of the first equation of the system (8) are + Nwi (N = 1,2,3,...). The
initial conditions are assumed only for that equation; they equal zero for the other

equations. Thus, for these equations, only the particular solutions are searched.

Example 1
Let us consider the standard example of vibrations of a system with one degree of
freedom, of the form:

d*x )
m? + (kg + kl cos 2t)x + kzx =0, (9)
where m is the mass of the body, and ko, k, and k, are rigidities. After assuming the

R k k k oy . )
parameters 42 = -2, u = -, and ¢ = -2, we Obtain the equation:
m ko m

dzx .3 3
F—}—z\ (1 + pcos2t)x + ex’ =0. (10)

For u = 0, we obtain the Duffing equation, and for ¢ = 0, the Mathieu one.
Let us develop the quantity 42 and x into a power series of small parameters u and &

J2=n? + a4 42?0 + 4 @V + patd 4 )
+ e2(a©? + pa™? 4+ pra?? + )+ ... (11)
X = x(0.0] + .ux(LOI + plez.ﬂl + ... +e{x(0,l] + ,U.X“'“ + ﬂzxtzm + }
+ F_Z(xtﬂ.ll + ,ux“'z' + ]uzxtz,Zl +..)+ ... {12)

Let us consider the first unstable zone (n = 1). After substituting (11) and (12) into (10),
and equating the expressions representing the same powers x and ¢ and their combinations,
we obtain the following recurrent system of linear differential equations:

0.0 4 ((0.00 _

F(1.0) 4 4 (1.0) — _ (0.0) 60y (1:0)5(0.0)

(2,00 4 y(2.0) = _ 4(2.003(0.0) _ (1,003 (1.0) _ 5(1.0) 0og D¢ x(0:0) _ x{1.0) cog 2t

%01y 4 y(0.1) (xm.uj}s‘_ a'% V(0.0

R 4 gD = 3(x(0.0)25(1.0) _ 5(1.0)5(0.1) _ a0 Dx(0.0) 059 q(1:1)5(0.0) (13)
— x®Vcos 2t

2D 4 2D = 3x(0.0)x(1.0)2 3(x(0:0)25(2.0) _ al2x0.00 _ alilxu.o;

- a{O.l:xcz.m _a{o,nx{l.t}] cos 2t — ail.mxto.ll — xtﬂ.llatl‘olcos 2

— x(Lihgo x“-“coszz,
%(0:2) 4 ((0.2) — _ 3(x(0.00)2,0.1) _ a'0:25(0.0) _ 4(0.1)4(0.1)

HLM 23:1-G
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Let us assume the initial conditions x(t = 0) = Ao, X(t = 0) = B,,. From the first equation
of the system (13) we obtain:

x%9 = 4, cost + Bysint. (14)

Substituting (14) into the second equation of the system (13), from the condition of avoiding

1 1
the secular terms, we get: 1° ¢*® = — - and B, = 0 or 2° a*? = - and A, = 0. Let us
& 2 2

. 1 . . .
consider the first case: then x*'% = 6 A, cos 3t and, passing on to the third equation, we
have:

7 A
a0 = — x20 = — —9—A0 cos 3t + =% cos 5t.

32’ 256 768

Acting analogously we obtain:

a®? = —%A%. x!OD = 3—12A3cos 3t,
a”‘”=%A%. D = —1215/;3c053t+%0055r,
a?b = %A%, x2 = 24753?6A3005 3t — 7.;23’528 A3 cos 5t + %cos t,
a®? = ——T%Aé, x02) = 10324 Adcos3t + 303?2 Aj cos 5t.
Taking the above calculations into account in (11), we obtain:
=1 —%p+%p2+...+£/¢lé(~—%+%p+% z +"')+£2(_T32§A3+")+"’

For ¢ = 0 we obtain one branch of the first limit of stability loss of the Mathieu equation,
and for 4 = 0—the dependence of the frequency on the amplitude for a conservative system
with the Duffing characteristic.

Example 2
Let us consider the unsteady non-linear system with two degrees of freedom, the
movement of which is circumscribed with the following differential equations:

M2, + c(Z; — Z;) + klzy — z5) + ky(z; — 7, =0,

mi, — o2, — 2,) — k(zy — z;) — ky(z, — z,)* = —(ky — kocos2wt)z,, (15)

where: m and M are masses, k, k,, k; and k, are rigidities, and c is a damping coefficient.
The frequencies of free vibrations of the conservative system will be calculated after
assuming ¢ = k; = kg = 0 in (15). They amount to:

[k k+k k  k+k, Y 4kk
2 _ 3 - 3 _ 3
f""2_2[M+ m +\[(M+ m ) Mm]' (16)
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We shall limit ourselves to calcylating the first simple parametric resonance around the
frequency aj.
Equation (15) will be rearranged to the form:

V14 Ay = —eMAi(e,ys — £291)° — pd1A4(e,9; — £291) + pp1A3(y; — yz)cos2t,
17)

V2 + Ap?y, = —eMAZvi(e,y, — €39,)° — ud, A We Y, — €391) + Up, AP (yy — yy)cos 21,

where:
ko k a? M \
ﬂ=k_l') 8=f) T=wl, A?_;! ;=M’ yi___{l_lz)!
o Mo, c
zy = By — Boyys z, =¥y — y2) at_: = 6, = mkl ’
_ vk _wke o _k-Ma o k- Mao
Yomal 2 oma?’ ! k7 2 ko’ Y=V
my, mys
e=p+y, P=—"—  =p+V¥, Pi=—7— (18
1 =h YTM(y, — 7)) 2= F2 2T M@y, —72)

We seek the solutions of (17), of the form:

yr = Y00+ O+ YO L+ ey D PP ey 4
P2 =0 + w0+ wyEO + L+ ey + e+ ey

AP =1+ pa"® + u*a®? + ..+ ea®V + 20" + ..+ pealV + ...

lgu.m a(IO.ll a(l.l] 112.0! a(10.21
A=1+ S+ Tse 12 ,ue+,uzT+szT+... (19)

After substituting (19) into (17) we obtain the following system of linear differential
equations:

PO 4 (0.0 —

y(ll.ﬂl + y[Il,DJ — adl O)ylo Lt} 6 (8 y(O 0) £ y(‘O .0) + Py (y(O 0) {20.0))608 2'(,

tl

1(2,0) (2,0) _ (1,00, (1,0) 2.,0),,(0,0
Vi + Yy = —ay — aF Oy —

(0,0) __ tD,D]
Vi )

(sy

— 6, y5" — ){"”) + pyaf’ '°’{y‘1°‘°’ — ¥ cos 2t
+ p, 04" — y3 cos 21,
j,{lo‘l) + y(lo.lj = _ailo,ll}ygo,m M{S },(0 0y e yw 0])3
y[lll] _ a(ﬂ.l]ytlﬂ.o] _ Mallo.l](aly(zo.ol — szygﬁ.ol)a
_ M{SES(y(O 0])2 (0,1) 65 & y{ﬂ 1) (D 0) + 65182 (0, 0)y{0.0’y(10.1)
+ 36,820 (YO O)2 — 3300201  3g2g (500201}
P 4 D o gD (0.0) _ 5010100 a0y _ §7 (10, (0.0 _ £,y'00)3

_ M[Sf ylo Ol) yl’l .0) 6£fy(20.01y(21,0152y(10,0} + &lsiytzo.OIytll.O}yllo.ﬂ}

10.2) (0,2) 0,1
PO+ 0P = —a??

a, 0.0 1
— 0, (6,05 — e,00Y) — & (8080 — £,y

+ p, (%Y — yP Y cos 2t + p,a® V(Y — yP) cos 27 (209
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OO 4 2y 00

£(1,0) 2.(1,0)
Yy viy;

1(2.0) 2.42.0)
Y+ viy;

y{O 1) + v y(() 1)

'(0,2) 2.,(0,2)
yz o+ vy,

a(1,1) (1.1) _
Y+ y =

Let us assume the initial conditions y{**?(0) =

assume y9? =

we shall obtain:

(0,0}

i)

a‘ll \0)

{1,0)

Y1

(1,0)
Y2

(0,1) _
ay =

(0.1) _
i =
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. Mv2(3£3(y(0 Ol)lytzo.l] — 6£%£2y(20.0]y(20.1)y(10'

+ 66,62y OYOOYOD + 3g,e3y P V) —
— 382[))(0 oa}za yco 1!)

2 (1,1 0,0 (1,0
vl DyeO -

2 (0,1) 2 (1,0),,(0,1)
veayrys viay'y:

2 57 4(1.0) 1,(0,0
— v?Mal e, y3" —

— 68 £ y[0 U}ytl D)y(D ,0) + 68 e ytﬂ Oly(l Uly((] L0}

(1, 0) 2(0 )

+ 3£ P y 353(}’(0 0])2 (1, 0)) _ 6

(0,0) __

(£,)8 YOO — 5,ue, yO 0 — £, )

+ p V(Y —

y§ ) cos 2t + pyvZa(P V(P —

Ao, YN0) =

— _ y24(1.0),(0,0 0,0 (0.0 2(,(0,0 0.0
= a[ ) ( Y 8 V{B yt ) 2},(1 I} + pyv (J,,(l J_ytz ‘)60321’,
. (1.0)

_ 2 (1,0),,(1,0 2,(2,0),,(0.0 (0,0 1(0,0
= —via1 Oy — viaf Yy — 8, (9% — £,90%)
(1,0) (1,0 2 .(1,0),,(0,0) 0.0
—8,v(g, 15" — g3 + povia"O00 ™ — y9?) cos 2t

+ pov2(V? — y§ ) cos 2t
2 (0,1),,0,0 7.2 0.0 0,013
= —vZaP VPO — Mv¥(e,yy? — £,
= VYO0 _ g02y20.0) _ 2 K70 (g, 100 _ £,)0:)2

0)

383{yt0 O})2y(lﬁ"1 )

szy(lﬂ,l)]).‘! _ v2M(38315{y(20.0)}2y[21 ,0)

38 P (yw 01)2 (1,0)

(0 1]

2

l))

\’

y29) cos 21. (20"

B, whereas, because we

0, then the two remaining initial conditions can be unrestricted. Let us
limit ourselves to considering the equations occurring near y, & and pe. After calculations

Agcost + Bgsinr,

Pi

+ ? — 825%,

P14o PlBo :

16 9 cos 3t T sin 31,
2 2

(A052v£2 + %) (52v5230 szon

— R sint + — CcoS T
ve — Ve —
2 2

Mcos 3t + —’%sin 31,

2{v —9) 2(v: —9)
3 342 2
ZMﬁz(Ao + By),

1 _ A: 3 1 3 1
_gME;AO(T ZB%) cos 3t — §MS§BO(4A - ZBG) sin 31,



Unstationary non-linear mechanical systems 93

(-vzagO-HAO + %MvzeiAg + %MvzsngBﬁ)
0:1) = cos T

Y v—1

3 _ _
(— v2a® VB, + 1 Mv2e3AZB, + %MvzsgBa)

sint (21

v:—1

4 4

cos 3t + sin 37.
v:—9 v -9

1 3 _ _ MvelB3
(—lesug - ZMuzagAUBE,) (éMvzagAgBD — V%%

From the sixth equation of (20') we obtain the expressions for cost and sin 1, which we
equate to zero in order to avoid the terms unrestrictedly growing in time. We obtain:

3 _
—af VAo + 3 Mal Vc3A3 + Mai' ¢34 0B}

2 2
(A052V82+p2v BO) (azvszBD+p2v AD)
—3M8 82 — 2 -AUBO+ 2 §A2+lBl
192 V2—1 2 Vz—l 4 0 4 0
M(IAZ_le)_}._pzszn .AUBO +3H83 _A_g _AﬂplB%_’_isz A
202 —9\a7° 737 T 9 2 2 T 32 64 P17
2 (0.1) 3 2 2.3 42 3 = 23p3
(0,1) —via"VB, + - Mv*e3A;5B, + - Mv°e3 By
+5a1 e,Bg — 0,8, 4 4 — P14 N2 1,42__232
1 240 11 szl 16 0 3 4 V] 4 C

_ 3 _ _ _
(—uza‘P"'AU + %MvzsgAS + zMa%AoBé) | (}‘Muzs;Ag - %MvzagAGBg)

+_
vi-1 2 v:i_—9

w|®

+ %pla‘f’"’Ao] =0, (22)

1 - 3 _ _
—aVB, + zMa‘,"mngA%Bo + ZMa‘f D3B3 — 3Me, &3

2 2
N a0+ 358 V1 2

Pz"zBo) ( Pz"zAn)

Agd,ve, + ——— d,ve, By +

( 092VE2 3 1 3 2VE3 D9 3 A,B,
p— + .

1p,v2A3Bo | pav*Bo ( 1o, 1 )]
- — 1B} + A
d (-9 T2i-9\ 40t gh

_ .0 A2B, A2B 1 5,a%V
+ 3M¢3 —9‘64" o4 "3;"1 + angi] _ _121_52,40
3 _ 3 "
(—vza‘lo'”AD + ZlesgAg + ZMvzsiAoBé)
—oe |- v =1
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3 - _
VB, + szzsgAéBo + %Mrzang

Pstg (éAz_le _ P v
16 0470 47 2

y2 — 1

\

3 _ 1 -
_Mrz 3AzB __M 2333)
+(4 V7E3ADy 4 V'EzDg __.01‘1(10'1)30:'_0
2v2 —9) 2 e

In order to avoid time-consuming calculations, we assume that B, = 0. Then:

‘ 3 - _ pv? 9 3 p,v?
altt) = 7 a3 4% — Mee5 ——— 07 1) gAz g Mslsg(ﬁ—vz — 9]/13
3 - 1 via®Y  3Mvie3A3 1 Mvies A] a®v
— 2 Medp, A2 — — MedA !5' 1 . 270 | _ : 240 | P19}
64 64 7 —1) 8E—1) 8 (-9 2

Substituting the calculated values a{*?, a{’*", a{"*" into the third equation (19), we obtain
the analytic form of the limit of the loss of stability, dependent on u, ¢ and the other

parameters.

SUMMARY AND CONCLUDING REMARKS

The method presented in this paper makes it possible to find the analytical solution of
the equations circumscribing the vibrations of non-linear unstationary systems. The
characteristic multipliers and the solutions are sought in the form of power series of small
parameters u (characterising the quantity of non-linearity). In this method after assuming
u =0 or ¢ =0 we obtain the solutions, which could be determined with the use of the
standard method of small parameters. Such analytical form of solution makes it easier to
analyse the influence of non-linearity on the limit of stability loss, or vice versa, the
influence of parametric excitation on the preservation of the non-linear system. Moreover,
it is easy to obtain from it the solution for y = 0 or ¢ = 0.

As opposed to the standard method, where the idea used to the systems analysed in the
paper consists in a stiff dependence of one parameter on the other (which in the case of
reducing one of the parameters to zero leads to the reducing to zero of the other one) and
in effect searching for solutions in the form of power series in relation to one small
parameter, the form of the sought solution proposed by the author makes it possible to
determine e.g. connections between parameters x and ¢ such as to realize the predetermined
conditions concerning the course of the limits of the loss of stability.

The sought form of solution as well as of the characteristic multipliers contains the
terms at powers &y’ (a, 1 = 1,2,...), which, in the standard method, occur only for a < 2.
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