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ABSTRACT 
The purpose of this work is to present mathematical model of a spatial double pendulum with rigid movable 
obstacle and report results of numerical simulations with particular emphasis on specific bifurcation phenomena 
as well as effectiveness and importance (influence on system dynamics) of individual elements of specific 
(reduced) model of contact forces. The system consists of two links connected  to each other and suspended (by 
the use of two universal joints) on the shaft performing rotational motion about its horizontal axis according to a 
given function of time (kinematic driving). The second link ends with a ball which can come into contact 
(impacts and permanent contact) with a planar and rotating obstacle situated below the pendulum. In this work 
we use and expand our earlier developed models of contact forces (resulting friction force and rolling resistance). 
The models of friction force and moment are based on the integral model developed under assumption of fully 
developed sliding on a planar contact area, where at each point the classical Coulomb’s  friction law is valid. The 
integral models are then replaced by special approximations being more suitable for fast numerical simulations. 
In the present work we model impacts with non-point frictional contacts assuming Hertzian compliance of the 
obstacle. The developed models as well as the planned experimental setup allow us for testing importance of its 
individual elements and may lead to general conclusions concerning modelling and effective numerical 
simulations of mechanical systems with frictional contacts. 
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1.  INTRODUCTION 
 
Pendulum and multi-pendulum mechanical systems play a very important role as a paradigm of many problems 
of pure nonlinear dynamics, as well as technical questions encountered in mechanical engineering, 
biomechanics, control theory and mechatronics. Among them one can indicate the systems of spatial pendulums, 
for which one can easy find works concerning single spherical pendulum and its different configurations like 
single rigid body model [1-3] or mathematical spherical pendulum [4]. Spatial multi-pendulum systems are much 
more difficult to find as an object of scientific analysis concerning pure non-linear dynamics [5]. 
On the other hand, impact and friction are common phenomena in mechanical engineering systems. They are a 
subject of interest as elements changing drastically bifurcation dynamics of mechanical systems, leading to new 
kinds of bifurcations and requiring new methods of analysis. Another area of interest related to impacts and 
friction is that of developing new models and methods leading to fast and realistic numerical simulations of such 
kind of systems.  
One of the problems being the base for modelling impact in 3D space is that of resulting friction forces 
appearing on finite area contact. Instead of solving the full contact problem, which numerical solution requires 
however a lot of computational power, one can try to find some kind of simplified or reduced models. An 
integral model of friction force for fully developed sliding on circular contact area and Coulomb friction law was 
presented in the work of Contensou [6]. In order to avoid necessity of integration over the contact area, another 
group of researchers developed special group of approximations of the integral model of friction [7, 8], also for 



other than circular shapes of the contact [9]. The results were then applied to modelling and numerical 
simulations of the wobblestone [10], billiard ball and full ellipsoid of revolution [11, 12]. 
The present work joins and continues studies of the works [5, 9-12].  The double spatial pendulum is equipped 
with a ball at the end of the second pendulum, which can come into a contact with rotating obstacle. The friction 
force is modelled based on the works [9-12], while normal force is modelled using Hertz stiffness with damping 
[13, 14]. 
 
 
2.  MATHEMATICAL MODEL 
 
Figure 1 exhibits the physical concept of the investigated system. There is defined the global (fixed) reference 
frame O1xyz with the origin at the point O1, which is the geometric center of the first massless Cardan-Hook joint  
(intersection of its two axes) connecting two bodies: body 0 and the first link 1 of mass m1. The rotor performs 
rotational motion about the axis O1x and its angular position is described by angle ψ1. Introducing the coordinate 
system O1x1y1z1 fixed with respect to the body 1, one can describe the angular position of the link 1 by the 
following sequence of rotations: by angle ψ1 about axis x11, by angle θ1 about axis x12 and by angle φ1 about axis 
x13 (assuming that for ψ1= θ1= φ1=0 the two coordinate systems O1x1y1z1 and O1xyz overlap each other). The 
center O2 of the next massless Cardan-Hook joint,  connecting the link 1 with the body 2 of mass m2, lies on the 
axis O1z1 and its position is defined by the parameter  L1= O1O2. Angular position of the link 2 is then described 
by the following sequence of rotations: by angle θ2 about axis y2 and by angle φ2 about axis z2, where we have 
assumed the coordinate system O2x2y2z2, originated at the point O2 and, for θ2= φ2=0, of axes parallel to the 
corresponding ones of the system O1x1y1z1.  

 
Figure 1 – The coupled pendulum with obstacle. 

 



The second link ends with a ball of radius Rb and centered at the point O3 lying on the axis O2x13 and with 
position described by the parameter L2= O2O3. It is assumed that the mass centers C1 and C2 of both pendulums 
lie on the corresponding axes O1z1 or O2z2 and their positions are defined by the parameters e1= O1C1 and e2= 
O2C2. Moreover the axes of the coordinate systems O1x1y1z1 and O2x2y2z2 are the principal axes of inertia of the 
corresponding bodies, thus their mass distributions are defined by six parameters Ixi, Iyi and Izi, denoting the 
corresponding principal central moments of inertia of the link number i  (i=1,2) with respect to the axis parallel 
to the corresponding axis Oixi, Oiyi or Oizi. The ball ending the second pendulum can come into a contact with 
the obstacle 3 having the form of disk rotating with velocity ωd about the axis z of the global coordinate system 
and having also possibility of motion along its horizontal axis – the corresponding position is defined by the 
parameter z0 describing the coordinate of any point of the disk’s surface along the axis z. All the bodies are 
assumed to be rigid. 
The introduced above definitions result in the following transformation rules between the vector’s coordinates 
expressed in the corresponding coordinate systems: 
 

 
1 1 11

TT
x y z x y zu u u u u u      

A ,  

 
1 1 1 2 2 22

T T
x y z x y zu u u u u u   

   
A , (1) 

 
where 
 
 1 11 12 13A A A A ,      2 22 23A A A ,  
  

 
1 1

11 1 1

cos sin 0
sin cos 0

0 0 1

 

 

 
 


 
  

A ,  12 1 1

1 1

1 0 0
0 cos sin
0 sin cos

 

 

 
 

 
 
  

A ,  
1 1

13

1 1

cos 0 sin
0 1 0

sin 0 cos

 

 

 
 


 
  

A , (2) 

 

 22 2 2

2 2

1 0 0
0 cos sin
0 sin cos

 

 

 
 

 
 
  

A ,  
2 2

23

2 2

cos 0 sin
0 1 0

sin 0 cos

 

 

 
 


 
  

A ,  

 
and where u  is component of a vector u  along axis ξ.  
The angular position of the body 1 (see Fig. 1) is assumed as the following function of time (kinematic driving): 
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which results in the angular velocity of driving  0( ) cost q t     and where ωo, q, Ω and ψ10 are constant 
parameters representing constant component  and amplitude of angular velocity, the corresponding frequency 
and initial angular position of the body 0, respectively. 
The governing equations of motion are expressed using the Lagrange’s formalism: 
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where T - is kinetic energy, V - potential energy of gravity forces, 

i
Q  and 

i
Q - are the corresponding 

generalized forces, which are expressed in the following way 
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where 
icQ and 

icQ   are their components related to contact forces (between the pendulum’s ball and disk 3), 

while 
icQ and 

icQ   represent damping in the joints. 

Model of  damping in the joints, taking into account future experiments and present experience of the authors, is 
assumed to have the following nonlinear form: 
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where Mb and ɛb are constant parameters common for all the joints. 
The generalized contact forces are computed in the following way 
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where Fc is resultant contact force acting on the ball of the second link at the contact point A and A2 is the body 2 
fixed point instantaneously taking the position of the point A. The contact force consists of two components 
 
 c  F N T  (8) 
 
where N is normal component of reaction and T is resultant friction force reduced to the point A.   
The normal component is modelled as 
 
 NN n , (9) 
where n is unit vector normal to the disk’s 3 surface and directed  upward N is expressed in the following way 
[13,14] 
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where h is distance between the ball and the obstacle. It is assumed that the bodies 2 and 3 can penetrate each 
other and negative h stands for depth of this penetration. Then the point of the contact A is defined as the point 
lying on the surface of the ball for which h reach the minimum value. In the formula (10) k stands for stiffness of 
the contact, b is damping coefficient and 1 is unit step function. The presented model of stiffness is based on the 
stiffness of the Hertz contact, where for the contact of a ball of radius Rk with an elastic semispace 
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and where ν1 and ν2 are Poisson’s coefficients of materials of the contacting  bodies, while E1 and E2 are their 
Young’s modulus. 
Friction force is modelled based on the previous works of the authors [9-12] 
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where μ is friction coefficient, bt, ε – constant parameters, ar – radius of the corresponding hertzian contact, 
while vs and ωs are relative linear and angular sliding velocities at the point of the contact 
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where 

2A tv  - is component of velocity of the point A2 (body 2 fixed point) tangent to the surface of the obstacle, 

3Av – velocity of the point A3 (point of the obstacle instantaneously taking the position of the point A), 2nω  – 

component of angular velocity of the body 2 normal to the disk 3, ω3 – angular velocity of obstacle. The size of 
the contact is calculated according to the following formula 
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Figure 2 exhibits test of the model (10, 11) of stiffness and damping of the obstacle. It is considered a ball of 
mass m falling and bouncing perpendicularly onto a horizontal plane 
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where g=9.81 m/s2 is gravitational acceleration. The remaining parameters are assumed as: Rb=0.025 m, ν1 = ν2= 
0.3, E1 = E2 = 2·109 N/m2, b = 0.5 m-1s. The results presented in Fig. 2 indicate, that the assumed value of daming 
coefficent b is resonable. Our tests (not shown here) indicate, that the ball’s behavior seems not to depent 
noticable on the coefficient k/m. 

a)     b)  
Figure 2. Position x (a) and velocity v (b) of a ball falling perpendicularly onto a horizontal plane  for the following 
parameters: m=0.5 kg, g=9.81 m/s2, Rb=0.025 m, ν1 = ν2= 0.3, E1 = E2 = 2·109 N/m2, b = 0.5 m-1s. 

 
 
3.  NUMERICAL SIMULATIONS AND BIFURCATION DYNAMICS 
 
 
During the presented in this section numerical simulations the following set of parameters remains constant: 
m1=4.59 kg, m2 = 2.41 kg, Ix1 = Iy1 = 0.0315 kg·m2, Iz1 = 0.0078 kg·m2, Ix2 = 0.0084 kg·m2, Iy2 = 0.0055 kg·m2, Iz2 
= 0.0038 kg·m2, L1 = 0.228 m, L2 = 0.175 m, e1 = 0.122 m, e2 = 0.0586 m, Rb = 0.025 m, g = 9.81 m/s2, Mb = 0.04 
N·m, εb = 0.4, b = 0.5 m-1s, ν1 = ν2= 0.3, E1 = E2 = 2·109 N/m2, µ = 0.2, bT  = 0.681, ε =10-3. 
In Figs. 3-9 one can observe results of numerical investigations of collision of the stable equilibrium position of 
the pendulum with the obstacle. The driving parameters of the pendulum are choosen in such a way, that for the 
parameter z0< z0

*=-L1-L2-Rb, the system tends to the stable equilibrium position at θ1=φ1= θ2=φ2=0. Displacement 
of the obstacle over the threshold z0

* (playing a role of bifurcational parameter) leads to complex dynamical 
behavior and potentially rare/uknown bifurcation scenarios. 
Figure 3 exhibits example of bifurcation scenario for the following driving parameters: 0 2rad/s  , 6rad/sq  , 

2rad/s   and for non-rotating disk of the obstacle ( 0d  ). After collision with the obstacle, the perioidc orbit appears 
(Fig. 3(b)), which then (after further growing of the horizintal poistion of the obstacle) transit into a quasiperidicity (Fig. 3(c-
f, h-i)), with periodic windows (Fig. 3(g)). Further increase of bifurcational parameter z0 allows to observe also chaotic 
motion (Fig.3(j, k)).  



 

a)  b)  

c) d) e)  

f) g) h)  

i) j) k)   
 

Figure 3. Bifurcation diagram of the system ( 0 2rad/s  , 6rad/sq  , 2rad/s , 0d  ) (a) and the corresponding 
attractors for: 0 0.4278 mz    - orbit (b),  0 0.426 mz    - orbit (c) and Poincaré section (d), 0 0.423mz    - orbit (e) and 
Poincaré section (f), 0 0.4221 mz   - orbit (g), 0 0.4215 mz    - orbit (h) and Poincaré section (i), 0 0.42 mz   - orbit (j) 
and Poincaré section (k). 

 
Another scenario is presented in Fig. 4, where the previous settings of the driving are applied but the obtacle is 
now rotating with angular velocity 10rad/sd  . This change leads to sudden occurence of chaotic atttractor just after 
collision of the stable equlibrium position with the obstacle (see two examples of chaotic attractor in Fig.4(b-e)). 
The following parameters of the driving: 0 0  , 10rad/sq  , 2rad/s   and non-rotating  obstacle ( 0d  ) leads to 
results presented in Fig. 5. In this case, similarly as in the example shown in Fig. 3, the periodic orbit occurs after the 



collision with the disk (Fig. 5(b)), but then it transit directly to the chaotic region during further change of the parameter z0 
(see Fig. 5 (c-d)). For higher positions of the obstacle mainly perriodic attractor is observed (Fig 5(e)). 
Further examples are presented in Figs. 6-9, where different driving parameters are applied. One can observe similar 
scenarios as shown prevously: sudden occurence of chaos (Fig. 6-8) and birth of periodic attractor, whcih then trasnsits to 
chaos (Fig. 9).  

 

a)   b)  

c) d)  e)  
Figure 4. Bifurcation diagram of the system ( 0 2rad/s  , 6rad/sq  , 2rad/s , 10 rad/sd  ) (a) and the 
corresponding attractors for: 0 0.4278 mz   - orbit (b) and Poincaré section (c), 0 0.398mz   - orbit (d) and Poincaré 
section (e). 

 

a) b)  

c) d) e)  
Figure 5. Bifurcation diagram of the system ( 0 0  , 10rad/sq  , 2rad/s , 0d  ) (a) and the corresponding 
attractors for: 0 0.4275mz    - orbit (b), 0 0.425mz   - orbit (c) and Poincaré section (d), 0 0.440mz    - orbit (e), 

 
 



 
 
 

  
Figure 6. Bifurcation diagram of the system for the parameters: 0 0rad/s  , 10rad/sq  , 2rad/s , 50rad/sd  .  

 

 
Figure 7.  Bifurcation diagram of the system for the parameters: 0 5rad/s  , 2rad/sq  , 6rad/s , 10rad/sd   . 

 

 
Figure 8. Bifurcation diagram of the system for the parameters: 0 0rad/s  , 10rad/sq  , 3rad/s , 5rad/sd   . 

 

 
Figure 9. Bifurcation diagram of the system for the parameters: 0 0rad/s  , 5rad/sq  , 3rad/s , 5rad/sd   . 

 
 
 
 



 
 

 
4.  CONLUDING REMARKS 
 
The work present, probably for the first time in the literature, application of special class of reduced models of 
resultant friction force based on Padé approximants and their extensions [9] in the modelling of impacts between 
two rigid bodies in 3D space. During the modelling some elements, e.g rolling resistance and  friction torque, are 
neglected. We expect that their influence on the system behaviour is not essential, however it can be examined in 
the further investigations. 
 In should be noted that the paper exhibits preliminary results, being a stage of preparation before experimental 
invesigations of the experimental rig beeing under construction. There are shown a few types of bifurcation 
scnenarios related to collision of stable equilibrium position with rigid obstable, e.g: occurence of stable periodic 
orbit further undergoing transition to quasiperiodicity, birth of periodic attractor undergoing then transition to 
chaos or sudden transition to chaos just after the collision. This is not sistematic classification of the dynamic 
scnenarios and further detailed analysis is required. However, the presented examples concern situations, which 
are rather rare or not present in the scientific literature, thus one can expect to find new kinds of bifurcations. 
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