
Abstract: Chaotic vibrations of rectangular spherical shells subjected to the action of
periodic load have been rarely analyzed. This work extends investigations initiated in
the works by Awrejcewicz et al. [1-3].

1. Mathematical model

A mathematical model of the flexible rectangular plate with constant stiffness and density under the

action of periodic load (Fig. 1) is constructed using the Kirchhoff-Love hypotheses and taking into

account the non-linear relations between deformations and displacements in the von Karman form. In

the rectangular co-ordinates the 3D plate space is defined as: 1 2 3 1 2{ , , | ( , ) [0; ] [0; ],x x x x x a b� = � ×

3 [ ; ]}x h h�� , 0 t� < � . In initial time interval [0;1]t� we introduce small static load, i.e. its lack

defines the governing differential equations as homogenous ones.

Figure 1. Plate computational scheme
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We study the following non-dimensional PDEs governing dynamics of the shallow shells [4]: 
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where: 4
λ∇ , ( , )L w F  and 2

k∇  – known non-linear operators, w  and F  – functions of deflection 

and stress, respectively.  

The following non-dimensional parameters are introduced: a bλ = ; 11x ax= , 22x bx= ; 

1 1

2 (2 )x xk a R h= , 
2 2

2 (2 )x xk b R h=  – non-dimensional shell parameters regarding 1x  and 2x , re-

spectively; 2w hw=  – deflection; 3(2 )F E h F=  – stress function; 0t t t=  – time; 
4

2 2

(2 )E hq q
a b

=  – 

external load; (2 )hε ε=  – damping coefficient, 3(2 )P E h P=  – external longitudinal load. Bars over 

non-dimensional quantities in the governing equations are already omitted. The following notation is 

introduced: ,a b – plane dimensions in 1x  and 2x  directions, respectively; μ  – Poisson’s coeffi-

cient.  

Equations (1) are supplemented by the following boundary conditions [5]:  
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and the following initial conditions: 

1 2 0( , ) | 0, 0.t
ww x x
t=

∂= =
∂

 (3) 

2. Method of solutions and results 

Our mechanical object is studied keeping fixed the following parameters: 1λ = , Poisson’s coefficient 

0.3μ = . We apply the following longitudinal load 0 sin( )
1 2x x pp p p tω= = . After the application of 

FDM with approximation �(h2) regarding spatial co-ordinates the differential problem (1-3) is solved 

by the Runge-Kutta method of the fourth order. In addition, on each time step we need to solve a 

large system of linear algebraic equations regarding the stress function. Time step is yielded through 

the Runge principle. The number of partitions of spatial co-ordinates is n=14. The number of parti-

tions choice and convergence of the obtained numerical results is discussed by Awrejcewicz et al. [6]. 
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Table 1. Charts of the shell vibration regimes versus geometric parameters. 

1 2
0x xk k= =

1
12xk = ,

2
0xk =

1
24xk = ,

2
0xk =

1 2
12x xk k= =

1 2
24x xk k= =

Notation  

In this work we take amplitude and frequency of the exciting longitudinal load acting on the shell 

perimeter. Our aim was to construct charts displaying the system vibration regimes with parameters 

300×300. In order to construct each of the charts 90 000 differential problems have been solved. Each 

of the mentioned problem required analysis of signals (time histories), phase and modal portraits, 

Poincaré cross-sections and maps, Fourier and wavelets frequency power spectra, autocorrelation 

functions, and signs of the Lyapunv exponents. Table 1 gives charts of the shell vibration regimes de-

pending on the geometric shell parameters. In the first sub-harmonic regime the zones of Hopf bifur-

cations are wide. It is seen that an increase of the geometric parameters implies the increase of bifur-

cation zones and chaotic dynamics zones, and a decrease of the zones of periodic vibrations. Besides, 
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one may observe that in the case of shell curvatures 
1 2

24x xk k= =  a transition from periodic into 

chaotic vibrations appears suddenly without any other transitional zones. The following general re-

marks are based on the computational results. Small exciting load amplitudes generate damped vibra-

tions. Low values of the applied frequencies 2ω ≤  of sub-harmonic zones of vibrations (excitation 

frequency is doubled in comparison to the shell vibration frequency) are mixed with the zones of pe-

riodic vibrations. An increase of the excitation frequency implies extension of these zones into higher 

frequencies, and they are interlaced with rather large chaotic zones. 

Table 2. Fourier and wavelet spectra  (
1

12xk = , 
2

0xk = , 8.4pω = , 0 8.5p = ). 

Fourier spectrum (all time) Wavelet spectrum (all time) 

Fourier spectrum 150t <  Fourier spectrum 150t >

While constructing the shell vibration charts chaotic dynamics occurred already after the second 

or even first Hopf bifurcation. Additionally, the wavelet spectra imply that these bifurcations appear 

even at fixed amplitude and frequency of the excitation for 0.t t≥  In the numerical example with pa-

rameters 
1

12xk = ,
2

0xk =  (cylindrical panel), 8.4pω = , 0 8.5p = , [0;300]t ∈ , using both Fourier 

and wavelets spectra it is evidently demonstrated how power spectrum essentially changes in time. 
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For instance, at 150t <  the first Hopf bifurcation takes place ( 1 / 2pω ω= ), at 150t >  the second 

Hopf bifurcation appears ( 2 / 4pω ω= ) (Table 2). A more detailed analysis is provided by the wavelet 

analysis which allows us to monitor local particularities of the studied signal. 

3. Conclusions 

The charts reported in this work allow us to control the investigated continuous mechanical systems. 

The choice of the control parameters should be made in a way to keep the system within a safe (peri-

odic) zone. Otherwise, transition into the chaotic zone implies the system stability loss and its catas-

trophe.  
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