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Abstract: The dynamical response of a harmonically excited 3 degrees-of-freedom 
planar physical pendulum is studied in the paper. The investigated system may be 
considered as a good example for several engineering applications. We adopt the 
asymptotic method of multiple scale (MS) in order to carry out the analytical 
calculations. The solution until the third order has been achieved. MS method allows 
to identify parameters of the system being dangerous due to the resonance and yields 
time histories for the assumed generalized co-ordinates. The tests for up to 3 
simultaneously occurring resonance conditions have been made. The energy transfer 
from one to another mode of vibrations is illustrated in the graphs. The modulation 
equations transferred into an autonomous form allows to obtain the frequency 
response functions and to draw resonance curves. Their stability can be verified. 

1. Introduction 

Pendulums are relatively simple systems, nevertheless can be used to simulate the dynamics of a wide 

variety of engineering devices and machine parts. The coupling in the equations of motion describes 

energy exchange between modes of vibrations and possibility of autoparametric excitation. The 

energy transfer associated with it is well known in nonlinear dynamics of multi degree-of-freedom 

systems an is widely discussed by many authors [1, 2]. 

Nonlinear dynamics of mechanical system with three degrees-of-freedom near resonance is the 

subject of this paper. The asymptotic method of multiple scales was applied both to solving the 

equations of motion and to determining the resonance conditions [3]. 

2. Formulation of the problem 

The investigated system consists of a rigid body of mass m suspended at the point A on a massless 

and linear spring, whose other end is fixed at point O (see Figure 1). The point C is the mass centre of 

the body. Let  S=AC denotes the eccentricity. The dynamical extension of the spring Z and angles φ 

and γ are used as the general co-ordinates. External excitations i.e. the force F(t)= F0(t) cos(Ω1t), the 
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moments Mφ(t)= M2(t) cos(Ω2t) and Mψ(t)= M3(t) cos(Ω3t) are taken into consideration. The motion of 

the pendulum is damped by viscous force ZC &
1  and linear moments ϕ&2C  and γ&3C . 

 

Figure 1.   Physical spring pendulum. 

Applying the Lagrange equations we obtain the motion equations. Their dimensionless form is as 

follows 
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 k denotes stiffness of the spring, L0 is its length, when it is 

unstretched, g is the Earth’s acceleration,  IA, iA  are moment and radius of inertia of the body with 

respect to the axis which passes through A and is perpendicular to the plane of motion, respectively, 

The Eqs. 1−3 are supplemented by adequate initial conditions (quantities 0601 ...,, uu  are known) 

( ) ( ) ( ) ( ) ( ) ( ) .0,0,0,0,0,0 060504030201 uuuuuzuz ====== γγϕϕ &&&  (4) 

3. Solution method 

The asymptotic method of multiple scales in time is used to obtain the solution and to determine  
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resonance conditions. Trigonometric functions in Eqs. 1−3 are approximated by the power series of 

3rd order. The amplitudes of vibrations are assumed to be of the order of a small parameter ε , where 

10 <<< ε , hence ζε=z , ,φεϕ = χεγ = . The functions φζ ,  and χ  are sought in the form 
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where ,0 ττ = ,1 τετ = ,2
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are various time scales. 

The derivatives with respect to time τ  are equivalent to the following differential operators 
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The amplitudes of generalized forces, damping coefficients and eccentricity are assumed in the form 
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The quantities sfc ii
~,

~
,~ are of the order of unity. 

Substituting the assumptions given by Eq. 5 and then arranging them according to the powers of the 

small parameter, we obtain the set of  nine partial linear differential equations 

− first order equations (i.e. the order of ε ) 
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− second order equations (i.e. the order of 2ε ) 
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− third order equations (i.e. the order of 3ε ) 
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We start solving these equations from Eqs. (8), because of the recursive nature of the system (8) 

– (10). Each of Eqs. (8) is homogenous and their solutions have the form 
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where  321 ,, AAA  are unknown complex functions of  21  and ττ , iA  is conjugate to iA . 

Introducing all of these solutions into Eqs. (9) implies that there appear secular terms. Conditions of 

the eliminating secular terms are conducive to the request that the functions iA  depend only on the 

variable 2τ . After rejection of secular terms we get the second order solutions. The solution of Eqs. 

(10), we obtain in the similar way. We do not write here the solutions of the second and third order 

due to their extensive form. 

4. The conditions of resonance 

The resonance conditions can be obtained based on the analytical form of the solutions.  All 

resonances detected in this way can be recognized as: 

− primary external    p1 = w1,  p2 = 1,  p3 = w3, 

− internal  w1 = 2,  w1 = 2w3,  w1 = w3 + 1,  w1 = w3 – 1,  w3 = 1, w3 = 1 + 2w1,  w3 = 3, w1 = w3,  
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            w3 = 2w1 – 1,  1 = 3w3. 

5. External resonances 

 The case of simultaneously occurring three primary external resonances is discussed below. The 

resonance effects are reflected in the secular terms, when we introduce the detuning parameters 

.,1, 33322111 σσσ +=+=+= wppwp  (12) 

We assume the detuning parameters are of the order of small parameter, i.e. ii σεσ ~= . Introducing 

the parameters iσ  into Eqs. (1−3) causes the appearance of the secular terms. As a result of their 

elimination we get the conditions of solvability of the problem. They are the system of six differential 

equations with partial derivatives of unknown functions iA . This system shows that the functions iA  

depend only on the slowest time scale 2τ . The unknown  functions iA  are then represented by real 
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The functions ( ) 2τia  are amplitudes and ( )2 τψ i  phases. 

Afterwards we introduce the modified phases  
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Taking advantage of  Eq. (6)1 and making some transformations, we obtain autonomous 

modulation system in the form 
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Illustration of the amplitude modulations according to the above equations and time history 

obtained numerically form Eqs. (1−3) are presented in Figure 2. This graphs have been made for the 

following parameters: σ1 = 0.03, σ2 = 0.02, σ3 = 0.02, w1 = 5, w3 = 0.2, s = 0.05, p1 = w1 + σ1, p2 = 1 + 

σ2, p3 = w3 + σ3, f1 = 0.001, f2 = 0.001, f3 = 0.001, c1 = 0.002, c2 = 0.002, c3 = 0,002 and initial 

conditions: a1(0) = 0.004, θ1(0) = 0, a2(0) = 0.004, θ2(0) = 0, a3(0) = 0.004, θ3(0) = 0. 

 

Figure 2.   Amplitudes modulation and time history for z, φ and γ. 

6. Conclusions 

The equations describing the dynamical behavior of the pendulum have been successfully solved by 

the multiple scales method (MSM). General solution, including the third  order of approximation, 

have been achieved in analytical form. Dimensionless solutions are universal and valid for many 

similar systems. 

The application of MSM allows determining the conditions under which the external and internal 

resonances appear in the system. The differential equations of amplitude and phases modulation have 

been obtained for a combination of simultaneously occurring external resonances. The amplitude 

modulations are consistent with time history of vibrations obtained numerically. The amplitude 

responses as functions of the detuning parameters have been received for the steady state motion. 
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