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Abstract: The dynamical response of a harmonically excited 3 degrees-of-freedom
planar physical pendulum is studied in the paper. The investigated system may be
considered as a good example for several engineering applications. We adopt the
asymptotic method of multiple scale (MS) in order to carry out the analytical
calculations. The solution until the third order has been achieved. MS method allows
to identify parameters of the system being dangerous due to the resonance and yields
time histories for the assumed generalized co-ordinates. The tests for up to 3
simultaneously occurring resonance conditions have been made. The energy transfer
from one to another mode of vibrations is illustrated in the graphs. The modulation
equations transferred into an autonomous form allows to obtain the frequency
response functions and to draw resonance curves. Their stability can be verified.

1. Introduction

Pendulums are relatively simple systems, nevertheless can be used to simulate the dynamics of a wide
variety of engineering devices and machine parts. The coupling in the equations of motion describes
energy exchange between modes of vibrations and possibility of autoparametric excitation. The
energy transfer associated with it is well known in nonlinear dynamics of multi degree-of-freedom
systems an is widely discussed by many authors [1, 2].

Nonlinear dynamics of mechanical system with three degrees-of-freedom near resonance is the
subject of this paper. The asymptotic method of multiple scales was applied both to solving the

equations of motion and to determining the resonance conditions [3].

2. Formulation of the problem

The investigated system consists of a rigid body of masaspended at the poiAton a massless
and linear spring, whose other end is fixed at pOif$ee Figure 1). The poiftis the mass centre of
the body. Let SSAC denotes the eccentricity. The dynamical extension of the sprargl angle®
andy are used as the general co-ordinates. External excitations i.e. th&(prcEy(t) cosQ,t), the
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momentaM,,(t)= M(t) cosQ,t) andM, (t)= Ms(t) cosQst) are taken into consideration. The motion of

the pendulum is damped by viscous foQi and linear moment€,$ andC,y .

Figurel. Physical spring pendulum.

Applying the Lagrange equations we obtain the motion equations. Their dimensionless form is as

follows
7z oz wz+ 4 cof(y @z} )+s sing-y f-scosp-y)¢ ¥ =f cospr), 1)
s fiz )(sipty J°ys @z xog(-y )y ¥ ®z)p+cd+ (z)(sing } Zg)=f,cosp,r), (2)

JHey+wE sing )W (b 2)(sing - y)p® +W2sing- )2+ w2 cof(-y )(z P+ 29)= f,cospr) (3)

where z, ¢, y are functions of 7, L=LO+@, zzz, s:§, 25, wjzg, w§=%,
k L L m L i
Wl_ﬂ, WS:&’ T=wt, ¢ = G , C, = C;z , C= C, , flzi, f2: M, ,
w, w, mw, mLw, w,l , mg mgL
f,= '\f3 . p=—",i=123 k denotes stifiness of the sprintg is its length, when it is

wz I A “)2
unstretchedg is the Earth’s acceleration,,, ix are moment and radius of inertia of the body with

respect to the axis which passes throAgind is perpendicular to the plane of motion, respectively,

The Egs. 3 are supplemented by adequate initial conditions (quantigies.,u,; are known)
2 9=uy, A 9=uy, #(9=ues H(9=us 0= s, A0) = . )

3. Solution method

The asymptotic method of multiple scales in time is used to obtain the solution and to determine
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resonance conditions. Trigonometric functions in Eg8 are approximated by the power series of
3 order. The amplitudes of vibrations are assumed to be of the order of a small pasmetere

O<e<<l, hencez=¢{ ,p =@, y=&x. The functions?, ¢ and y are sought in the form
. k=3 . k=3 .
¢=2 ¢ (rorn,)+ 0, 9= alror.1,)+ 0", x =3 e X (r0.7,.7,)+ O(*) (5)
k=1 k=1

wherer, =7, 7, =&1, T, = £°T, are various time scales.

The derivatives with respect to tinteare equivalent to the following differential operators

2 2 2 2 2
i:ih‘; 9 +£2 9 , d = 62+25 9 +£° 9 S +2 9 +o(£3) (6)
dr odr, 01, or, dr* oar, 07,071, or; 07,07,

The amplitudes of generalized forces, damping coefficients and eccentricity are assumed in the form

c =£%, f =£3f~i , =123 s=&%5, )

The quantitiesc, , E,§ are of the order of unity.

Substituting the assumptions given by Eqg. 5 and then arranging them according to the powers of the
small parameter, we obtain the set of nine partial linear differential equations

— first order equations (i.e. the order of)

% 2 ’n ) o’y
+ =0, +@ =0, Lyw?| oy, + =0, 8
- second order equations (i.e. the ordeedj
6252 +WZZ __1@2_2 6251 + aﬂ 2
arz Ut 2 ar,0r, \or, )’
’p, a’g 0, 0@ ’g
+@=- +2 2252 , 9
ar? G 51[(/71 ar? ar, 01, A107, ®)

3x, . o .0 . 0%¢, , , ') _, Ox O'n 04,09
e Y =W (@ - + -2 —2L 2w +—
arz  ° Xz ar? )| @ Xl)arg Yory ) oarg@r,  Clordr, 91, 97,

- third order equations (i.e. the order of)

2
2 ruig, =

2 2 2
2 6@(26@ +2&H4125ﬂj_~5(1_54._2 ¢, _, 0%,
o7, or,

ar, 0r, ar, ar, dr} drdr, 91071,

QP+ fl COSQO pl)r
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’p ., 7 @ ’aq (¢, .04, ,0¢ 07,04
=f,cos +—-{.@- - -2l =2+t 4 52\ 7A
or; = T COSER) g (R arf 2 or, Zlaro ar, )ar,

2 2 2
_2651 a@ +a§02 _2 a Ql 4 T2 a 402 Zz 2 leai{_ (10)
ory\dr, 091, 01,071, 0107, T, or,

2 2 2
_251[2 ’q 0 @J_ga X

aror, a1’ arz’

2

0°Xs , 2 ’p ) _ ¢ s ox _0x Py, , 0°x
+W2| x,+— = |=f_ cos + F-—5 -2 —+ = |-
R D O T T 13

2 2
i Xl{[gq} , 04 _aZ;J_ZW[[azl+ zJacq (ama@Jaé]_
T 0r,0r, 07, or, 01, )07, or, 0r,)dr,

9° a° 9° 9° 9°
_W§[ ¢i+2 4 +2 % J_W§(¢z_/\/z) Zl+ 3(@ /\/1)2 W;Zz ¢21_

ar? 0101, 07107, ar2 2 a7’

WZZ 2 azﬂ 6402
U Torar, ar?

We start solving these equations from Eqgs. (8), because of the recursive nature of the system (8)

— (10). Each of Egs. (8) is homogenous and their solutions have the form
G=A ¥ A B g=A EA €T, x =AM AR ™ P (Az do+ Ae’)(11)

W3
where A, A, A, are unknown complex functions of, andr,, A is conjugate toA .
Introducing all of these solutions into Egs. (9) implies that there appear secular terms. Conditions of
the eliminating secular terms are conducive to the request that the funéfiatepend only on the
variable 7, . After rejection of secular terms we get the second order solutions. The solution of Egs.

(10), we obtain in the similar way. We do not write here the solutions of the second and third order
due to their extensive form.

4. The conditions of resonance

The resonance conditions can be obtained based on the analytical form of the solutions. All
resonances detected in this way can be recognized as:
— primary external p; =w, p, =1, p3 =Ws,

—internalw; =2, wy =203, Wy =Wz + 1, Wy =Wz — 1, Wa =1, w3 = 1 + 2v;, W3 = 3,W; =W,
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W3:2N1—1, 1:3\/3.

5. External resonances

The case of simultaneously occurring three primary external resonances is discussed below. The

resonance effects are reflected in the secular terms, when we introduce the detuning parameters

p].:Wl-'-a-ll p2 :1+02' p3 :W3+J3' (12)

We assume the detuning parameters are of the order of small paramet@r=i&7, . Introducing
the parameterss; into Egs. (3) causes the appearance of the secular terms. As a result of their

elimination we get the conditions of solvability of the problem. They are the system of six differential

equations with partial derivatives of unknown functiofys This system shows that the functioAs
depend only on the slowest time scale. The unknown functionsy are then represented by real
functions a (z,) and ¢, (r,)

5 -a()

5 g4l a =g =123 (13)

The functionsa, (rz) are amplitudes andy, (rz) phases.

Afterwards we introduce the modified phases
6 (I o l: T& TY (T )1 0 (T u :): r 5 2_¢/2(T 2)1 93(T11T2): T153—¢/3(T2). (14)

Taking advantage of Eq. ¢(6and making some transformations, we obtain autonomous
modulation system in the form

da, _ T,
dr 2w,

da, _ f, . 1 da, _ f, _. 1
—2=_"2ging,--a,c,, —=—2sind,-=ac 15
dr 2 2 277 dr 2w 8o (15)

3

. 1
S|n91—§a1c1,

2

dé, w -7 .. 0
a,o, + a-+ cosd, ), 16
&gr T 4wllwf—4ja1 22w, € (16)

4 _ g2 —Qlad 2 _ 2 2
azﬂ =03, + (Wl :_)le 8)a2 + (Wl Z)alaz + aZ?NB +LCOS€2' (17)
16w; (w1 —4) 4(W1 - 4) 2(W3 _1) 2
2 —w5\a?2 3
9%, w;‘\zméalagz L zv%)izaa ML SIS (18)
dr 4(W1 4W3) 8@\’3 i) 16 2w,
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lllustration of the amplitude modulations according to the above equations and time history
obtained numerically form Eqgs.«3) are presented in Figure 2. This graphs have been made for the
following parameterss; = 0.03,0, = 0.02,05 = 0.02,w; = 5,w3; = 0.2,5=0.05,p; =Wy +ay, P2 =1+
02 P3s = Ws + a3, f; = 0.001,f, = 0.001,f; = 0.001,c; = 0.002,c, = 0.002,c; = 0,002 and initial

conditions:a; (0) = 0.0046,(0) = 0,a,(0) = 0.0049,(0) = 0,a5(0) = 0.0045(0) = 0.
z d’

0.0

0.003

00 i) 500

-02

Figure2. Amplitudes modulation and time history farp andy.

6. Conclusions

The equations describing the dynamical behavior of the pendulum have been successfully solved by
the multiple scales method (MSM). General solution, including the third order of approximation,
have been achieved in analytical form. Dimensionless solutions are universal and valid for many
similar systems.

The application of MSM allows determining the conditions under which the external and internal
resonances appear in the system. The differential equations of amplitude and phases modulation have
been obtained for a combination of simultaneously occurring external resonances. The amplitude
modulations are consistent with time history of vibrations obtained numerically. The amplitude
responses as functions of the detuning parameters have been received for the steady state motion.
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