
 
ENOC 2011, 24-29 July 2011, Rome, Italy

Analytical and numerical studies of effective reduction of a weakly nonlinear two 
degrees-of-freedom mechanical system 

 
 Roman Starosta*, Jan Awrejcewicz **  
 *Institute of Applied Mechanics, Poznan University of Technology, Poznań, Poland 
 ** Department of Automation and Biomechanics, Technical University of Łódź, Łódź, Poland  
  
Summary. Dynamics of a weakly nonlinear two degree-of-freedom system is analyzed. The problem is reduced to the so-called effective 
equation of the system internal motion. Novel non-linear stationary and non-stationary phenomena exhibited by the system are detected, 
analyzed and discussed. 

 
Introduction 

 
Energy exchange and non-stationary processes appear in many engineering dynamical systems and they are of great 
interest of many researchers. This problem has been widely discussed in references [3, 5].  Owing to strongly nonlinear 
differential equations governing majority of  the so far mentioned problems, mainly numerical approaches have been 
applied [3]. However, one may observe in recent years a great interest in a successful application of modern asymptotic 
methods to engineering oriented problems [1, 4]. In particular, a novel idea for an effective study of nonlinear dynamical 
systems is linked with a concept of the so-called limiting phase trajectories LPT (see [2]). In this report we are aimed 
mainly on analysis of unsteady-state dynamics of our 2-DOF nonlinear system using the LPT approach.  
 

Formulation of the problem 
 
The investigated system consists of a physical pendulum coupled with a small mass supported by a nonlinear spring as 
shown in Figure 1. 

  
Fig. 1. Nonlinear 2-DOF system. 

 
The pendulum moves in the neighborhood of its static equilibrium position. The systems exhibits flat motion, and the 
pendulum is excited by the external moment M. Viscous model of damping is taken and we assume in our further 
asymptotic analysis that m2<<m1.  
Kinetic and potential system energies have the form 
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The external loading and damping are taken into consideration as generalized forces. Equations of motion are derived 
from the second type Lagrange equations, and they have the following form   
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where I0, g, m1, m2, k, k1, c1, c2, L and S are the known parameters. 
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The equations (3)-(4) should be supplemented by the initial conditions for generalized co-ordinates and their first 
derivatives, i.e. one gets 

 ( ) ( ) ( ) ( ) 0000 0,0,0,0 ωϕϕϕ ==== && VZZZ .  (5) 

 
The problem is then transformed to the dimensionless form. 

 
The effective equation governing the system internal motion 

 
The carried out analysis of equations of motion consists of two general steps. At first equations (3) and (4) are 
transformed into one Duffing type effective equation. In the second step, new complex variables are introduced, and 
phase trajectories of the system are studied in the case of a main resonance. 

Dimensionless time tωτ = , where 
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and a new dimensionless variables ( ) ( )
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L τϕτφ =  are introduced into equations (3) and (4).  Next we introduce the variable describing internal motion 

( ) ( ) ( )τφττ −= zy . 

Using the idea presented in [6], the original problem can be reduced to the effective Duffing type equation,  
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with the initial conditions 
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where  γe, ηe, P, Ω, Φ are nonlinear parameters being functions of I0, g, m1, m2, k, k1, c1, c2, L, Ω0 and S. 
 

Complex representation and limiting phase trajectories 
 
Non-steady forced vibrations of weakly non-linear oscillator are studied applying the method presented in [2]. Equation 

(6) is transformed to the new form by introducing complex variables iyv +=ψ  and iyv −=ψ , where 
τd

dy
v = . 

Multiple time scales methods is further applied. After introduction of  τχψ ie= , τχψ ie−=  , a solution to the studied 

complex problem is further being sought in the form  
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where ττ =0 and εττ =1  are time scales. 

Then, a  first integral of  the solvability condition yielded by the asymptotic approach is analyzed. Various regimes of 
internal motion are detected using the phase plane of amplitude and phase shift of oscillations.  
 

Conclusions 
 
Analytical study of the 2-DOF nonlinear dynamical system is presented. It is shown how the investigated two degree-of- 
freedom system is reduced to the 1-DOF system representing the system internal dynamics. In particular, non-steady forced 
system vibrations are investigated analytically and the obtained results are verified numerically. Both qualitative and 
quantitative complex analyses have been performed. It has been shown that the most intensive energy transfer in the 
system is governed by behavior of the so-called limiting phase trajectories. Important non-linear dynamical transition 
type phenomena are detected, monitored and discussed, among other.  
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