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Abstract: In this work we study rotational oscillations of two coupled DNA bases 
that form a base pair: adenine-thymine (AT) or guanine-cytosine (GG). We show 
that the problem can be reduced to the mechanical problem of two coupled 
unequal nonlinear pendulums oscillating in the horizontal plane. We obtain the 
Lagrange equations and estimate the values of the coefficients of the equations. 
We consider in details the case of small amplitudes of angular displacements and 
find the general solution of corresponding Lagrange equations.  

1. Introduction 

It is widely accepted now that the structure of the DNA molecule is not static, but dynamic. Among 

other internal motions rotational oscillations of the DNA bases around the sugar-phosphate chains are 

of special interest because they make an important contribution to the process of the opening of the 

DNA base pairs that in turn plays a crucial role in the process of DNA-protein recognition. Therefore, 

analysis of the DNA bases oscillations helps to understand better the dynamical mechanisms of 

biological activity of the DNA molecule. 

In this work we study rotational oscillations of two coupled bases forming one of two possible 

DNA base pairs: adenine-thymine (AT) or guanine-cytosine (GG). The approach is based on the 

analogy between the rotational oscillations of the DNA bases (Fig.1a) and oscillations of nonlinear 

pendulums (Fig. 1b) which are well known and studied in mathematics and physics (see, for example 

[1, 2]). 

The analogy has been noticed and used in the work of Englander and coauthors [3], and then the 

idea was widely spread among the investigators dealing with the internal DNA dynamics [4-7]. 

According to Englander’s approach, oscillations of bases in one of two DNA chains can be imitated 

by the mechanical model consisting of horizontal chain of pendulums. Interaction between the DNA 

chains is approximately modeled by a constant field, which is an analog of the gravitational field in 

the mechanical modeling. Equation that governs oscillations of the pendulums has the form of the 



sine-Gordon equation. However, an application of the Englander’s model to DNA is not sufficiently 

correct, because the model does not take into account: (i)  oscillations of bases in the second chain 

and (ii) interactions between the chains. Although the mentioned oscillations have been taken into 

account in the references [8-10], but the bases in both DNA chains have been suggested to be 

identical. This limitation has been removed in the work [11], where an empirical formula has been 

used to describe interaction between bases in pairs. One of the ways to improve the formula consists 

in constructing a more accurate mechanical analog a pair of DNA bases: AT or GC.  

In this work we are aimed proposing the mechanical analog to overcome the deficiencies of the 

previous models. We apply this mechanical model to consider in details rotational oscillations of an 

DNA fragment consisting of only one base pair: adenine-thymine (AT) or guanine-cytosine (GG). 

Our paper consists of the following parts. In section 2 we describe the mechanical analog proposed, 

derive the function of Lagrange and corresponding equations of motion, and we estimate coefficients 

of the equations. In the next section we consider in details the case of small amplitudes. In the final 

section we discuss the results obtained. 

2. Mechanical analog of the DNA base pair and equations of Lagrange.  

In order to have a possibility to include into consideration the second DNA chain and to avoid the 

influence of gravitation field, a mechanical analog of DNA in the form of a vertical stack of 

horizontal planes with one pair of coupled pendulums on each of the planes is constructed. The 

pendulums interact with one another through a set of vertical and horizontal springs. In what follows 

we consider a fragment of the mechanical model consisting of only one base pair.  

The function of Lagrange reads, 
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where φ1 and φ2 are the angles of inclination of the 1-st and 2-nd pendulums; I1 and I2 are the 

moments of inertia of the 1-st and 2-nd pendulums; K12 and l are the rigidity and the length of the 

spring connecting the pendulums; a* is the length of the spring in its relax state being less than the 

distance a (Fig. 3c) between masses of pendulums in the equilibrium state (φ2 = φ1 = 0). So, l > a > 

a*. After taking into account approximation a* << l, damping and general external force, 

corresponding equations of Lagrange take then the form:  
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where 2121222111 2),(2),(2 rrBarrrAarrrA =++=++= , and r1, r2 are the lengths of the first and of 

the second pendulums, respectively. In this case the system potential energy possesses the following 

form, 
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3. Estimations of the coefficients values of equations (1) – (2)  for AT and GC base pair. 

Equations (1) – (2) contain coefficients characterizing both physical and geometrical properties of 

DNA. The values of first group of the coefficients have been estimated earlier in [12] (see Table 1.). 

Another (geometrical) group of coefficients (A1, A2, B, and a) estimated by us is presented in Table 2. 

The values of the coefficients β and F  that are also presented in Table 2, are taken from reference 

[13].  

i-th base Ii 
[10-47 kg·m2] 

ri 
[10-10 m] 

i-th base Ii 
[10-47 kg·m2] 

ri 
[10-10 m] 

A 7607,03 5,8 G 8217,44 5,7 

T 4862,28 4,8 C 4106,93 4,7 
Table 1. Values of the parameters 

 

Base pair A1 

[10-20 m2] 

A2 

[10-20 m2] 

B 

[10-20 m2] 

β 

[10-34 Js] 

F 

 [10-22 J] 

a 

[10-10 m] 

AT 208,8 172,8 55,68 4.25 3.12 7,4 

GC 205,2 169,2 53,58 4.25 3.12 7,6 

Table 2. Values of the coefficients. 

The value of the coefficient K12 can be estimated with the help of condition of breaking the 

hydrogen bonds connecting bases in pairs and forming an open state. To find the condition, we 

suggest that the breaking of hydrogen occurs when the generalized force applied to one of the bases 

reaches its maximum value.  

The generalized force (momentum) applied to the first base oscillator is equal to 
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Observe that the function M(φ1;φ2) reaches in the (-π, π]×(-π, π] space maximum at the point 

(-π/2, π). The value of potential energy at the maximum point is equal to 
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following formula 
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where ε12 is the energy of interaction between bases in pairs (for the case of AT base pair ε12 =  εAT 

=10 kcal/mol = 0,695 × 10-20 J; and for the case of GC base pair we have ε12 =  εGC = 15 kcal/mol = 

1,043 × 10-20 J) [10]. Results of estimations of the coefficient K12 made with the help of formula (3) 

yields the value 2,51 x 10-3  (N/ m) for AT base pair and 3,80 x 10-3  (N/ m) for GC base pair.  

4. Small amplitude oscillations.   

In the case, when angular displacements φ1(t) and φ2(t) are small, the Lagrange equations (1) - (2) can 

be linearized and they take the form  
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4.1. Case I (β=0 and F=0).  

Standard theory of oscillations [14] is used to find that the general solutions of linear ODE’s (4), (5), 

and the read 
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Amplitudes A(-), A(+) and phases α(-), α(+) are constants to be determined by initial conditions; 

fundamental frequencies ω(-), ω(+) have the following form 

,)(
4
1

2
)( 22

21
21

)( caaaa
++±

+
=±ω  

where 
1

1
121

)(
2
1

I
BAKa −

= , 
2

2
122

)(
2
1

I
BAKa −

= , 
21

122
1

II
BKc −= . The estimated values of the 

frequencies obtained for AT and GC cases are presented in Table 3.  



Base pair ω(-) [1012 (s-1)] ω(+) [1012 (s-1)] 

AT 0,1264 0,1988 

GC 0,1566 0,2532 

Table 3. Estimated values of the frequencies. 

 

The graphs of the solutions are shown in Fig. 1. for the initial conditions: φ1(0) = 1; 
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Fig. 1. Solutions for AT (a) and GC (b) base pairs. A base oscillations are shown by red line, T – by 

blue line, G – by green line and T – by black line (β=0 and F=0, ). t2410−=τ

4.2. Case II (β≠0 and F=0).  

In the studied case we get 
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Estimated values of the frequencies are shown in Table 4.  

 

Base pair w(-) w(+) 

AT 0,1124 0,2066 

GC 0,0600 0,2916 

Table 4. Estimated values of the frequencies. 

The graphs of the solutions are shown in Fig.4, where we used the same initial conditions as in 

the previous case.  

As follows from Fig 2, the angle amplitudes decreases more slowly in the case of AT base pair 

than  the case of GC base pair. This means that the life time of excitations activated in the fragments 

of the DNA chains consisting of AT base pairs is larger than that in the chains consisting of GC base 

pairs.  

AT 

 
a 

GC 

 
b 

Fig. 2. Solutions for AT (a) and GC (b) base pairs. A base oscillations are shown by red line, T – by 
blue line, G – by green line and T – by black line (β≠0 and F=0, ). t2410−=τ

4.3. Case III (β≠0 and F≠0).  

In this case solutions of the equations consist of two parts. The first part is the general solution, 

the second one is a particular solution of the system (4) – (5). Assuming that constants f01 and f02 are 

particular solutions of the system, the solutions of equations (4) – (5) have the following form 
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The graphs of the solutions are very similar to those presented in the previous section. The only 

difference is associated with the adding constants f01 and f02, which does not change essentially the 

results. 
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Figure 3. Solutions for AT (a) and GC (b) base pairs. A base oscillations are shown by red line, T – 
by blue line, G – by green line and T – by black line (β≠0 and F≠0, ). t2410−=τ

5. Conclusions  

In this work we studied rotational oscillations of two coupled DNA bases that form a base pair: 

adenine-thymine (AT) or guanine-cytosine (GG). We showed that the problem can be reduced to the 

mechanical problem of two coupled unequal nonlinear pendulums oscillating in the horizontal plane. 

We obtained the Lagrange equations, found analytical solutions in the case of small amplitudes of 

angular displacements, and constructed the trajectories of the studied dynamical system in the 

configuration space.  

At the same time the work we have done can be considered as a basis for consideration of many 

other problems associated with the DNA dynamics including, for example, the analysis of small 

amplitude oscillations under the action of periodical force and the studying of large amplitude 

oscillations of DNA bases.  
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