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Abstract: The weakly non-linear 2-DOF mechanical system parametrically and 
externally excited is studied. Multiple scales method application allows 
recognizing resonances occurring in the system. The amplitude response 
functions for chosen cases are studied and illustrated. 

1. Introduction 

The parametrical nonlinear systems are in great interest of many researches and we are aimed on a 

dynamical analysis of such a system. Namely, the pendulum with changing length moving in circular 

path is investigated (Fig.1). In this paper we are focused on recognizing resonance conditions and 

analysis of the chosen resonance dynamics. 

Dynamical systems including mathematical or physical pendulum play significant role in 

technology. In such systems one can observe an auto-parametric resonance phenomena, because of 

the coupling occurring in the equation of motion. The phenomenon of energy transfer from one of the 

mode of vibration to the other was widely discussed in references [3,4]. 

The structure investigated in the paper can be recognized as a model of various engineering elements 

in machines or can simulate the motion of a floating body.  

On the other hand, asymptotic methods are intensively developed in last decades and applied for 

solving nonlinear problems [1,2]. The multiple scale method makes possible to recognize parameters 

of the system that are dangerous due to the resonances and allows to illustrate frequency-amplitude 

response functions. In what follows primary, parametric and combined resonances are studied. All 

calculations were performed with the help of the computer algebra system Mathematica, in which 

several procedures were elaborated in order to automatize most of the operations.   
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Fig. 1. Spring pendulum moving on circular path 

2. Formulation of the problem 
We study the spring pendulum moving with angular velocity Ω  on a fixed circular path of radius R 
(Fig. 1) assuming the planar motion of the pendulum. X  and φ  are the generalized co-ordinates. 
Around the point O act the moment ( ) tMtM 20 cosΩ=

t1

 and the linear viscous damping moment 

. The force φ2BM r = ( ) FtF 0 cosΩ=

XBFr 1=

 acts on the mass m along the pendulum length. Moreover, 

linear viscous damping  is assumed (B1 and B2 are the viscous coefficients). 
The kinetic energy of the following system has the form: 
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whereas the potential energy reads: 
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where L denotes length of the statically stretched pendulum at 0=φ , m is its mass, k denotes 
stiffness of the spring and g is the Earth’s acceleration.  

The governing equations of the system are as follows: 
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The equations (3,4) should be supplemented by the adequate initial conditions. 



3. Solution method 
To solve the governing equations and to obtain the resonance conditions the multiple scale method is 

applied. 

Since the motion in a small neighborhood of the static equilibrium position is considered, the 

amplitudes of vibrations are assumed to be of order of a small parameter ε , where 10 <<< ε , and 

hence φεφε
~

,~ == xx . 

Owing to the above assumption trigonometric functions in (3) and (4) can be written as follows 
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The generalized forces are assumed as follows: rrffcc iiii
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The functions x and φ , which satisfy the equations of motion are sought in the form: 
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where , tT =0 tT ε=1  and  are various time scales. tT 2
2 ε=

The derivatives with respect to time t are calculated in terms of the new time scales as follows 
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The definitions (5) and (6) transform the original equations to the set of the following ordinary linear 
differential equations 
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In order to simplify the notation, the sign ~ (tilde) will be hereinafter omitted. 
After eliminating secular terms we obtain the following second and third order solutions:  
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The third order approximation is given by 
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C1, C2 , D1, D2 can be calculated from the initial conditions. 

4. Resonances 

From the above solutions, many resonance cases can be detected. They are classified into primary 

resonances (external and parametric): , internal resonance: 212211 ,,, ωωωω =Ω=Ω=Ω=Ω

21 2ωω = and combined resonances: ( ) ( )2121 , ωωωωωω +±=−±= . 

It should be noticed that the system behavior is very complex, especially when the natural 

frequencies satisfy certain resonance conditions. The parametric 1ω≈Ω and external 22 Ω≈ω  

resonances appearing simultaneously are discussed below. In order to study the resonances, we 

introduce detuning parameters 1σ  and 2σ  in the following way 

 , .  (14) 11 σεω +=Ω 222 εσω +=Ω

Substitution (14) into (8) and (9) allows to obtain the frequency response functions: 

- for parametric resonance 
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- for external resonance 

( )
( )

( )
( ) 2

2

2
22

2

2
2

2

2
2

2
1

2
1

3
2

2
2

2
1

3
2

2
2

2
1

2
12

2
2

2
12

22 44416
8

44
7

ωωωω
ωωω

ωω
ωωωσ facaaaa =+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

+
−

−
−− ,  (16) 

where a1 and a2 are amplitudes of the longitudinal and swing vibrations, respectively.  

-2 -1 0 1 2
�1

1

2

3

4

5
a1

c1�0.1

c1�0.2

c1�0.4

c1�0.6
c1�0.8

c1�1

-1 -0.5 0 0.5 1 1.5
�1

0.5

1

1.5

2

2.5

a1

R�0.02

R�0.04

R�0.05

R�0.06

 
Fig. 2 Amplitudes a1 vs. detuning parameter for different c1 (left) and for different radius R (right) 
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Fig. 3 Amplitudes a2 vs. detuning parameter for different c2 (left) and for different f2 (right) 

 

It can be seen in Fig. 2 that the amplitude a1 is a function monotonically increasing with R and 

decreasing with c1. Similarly, it can be seen from Fig. 3 that the amplitude a2 monotonically increases 

with the excitation f2 amplitude and decreases with c2. The curves are bent to the right, giving rise to 

the jump phenomenon.  
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Fig. 4 Amplitudes a2 against detuning parameter (effects of natural frequency 1ω variation) 

 

The influence of 1ω on frequency response for a2 is presented in Fig. 4. For 21 2ωω >  a soft spring 

effect is observed (curves are bent to the right).  For  a hard spring effect is observed 

(curves are bent to the left). An interesting phenomenon here occurs – at critical value of  

the plot slope is minimal. 

21 2ωω <

c11 ωω =



The graph in Fig.5 presents dependence of the coefficient which is multiplied by  in (16) versus 3
2a

1ω . It explains the slope changes of the resonance curves. In Fig. 6 the variation of coefficient at  

versus 

3
2a

1ω  is shown. 
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Fig. 5 The plot of the coefficient multiplied by  in (16) versus 3
2a 1ω  

 

Similar behavior as above can be observed in the external resonance for a2 for various 2ω . 

Resonance curves and the coefficient accompanying  in (16) for this case are presented in Figs. 6 

and 7. 
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Fig. 6 Amplitudes a2 vs. detuning parameter (influence of natural frequency  variation) 1ω
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Fig. 7 The coefficient multiplied by  in (16) versus  
3
2a 2ω

4. Conclusions 

The third order solution for the equations of motion of the studied system is achieved. Since in 

general the solution of the frequency response function regarding the stability of the system are of 

special interest, our results are presented in graphical form. In particular two chosen resonance cases 

have been discussed. 

Increase or decrease of 1ω  or 2ω  gives rise to the effect of hard or soft spring, respectively, as 

the curve is bent to the right or to the left, leading to the jump phenomenon (Figs. 4 and 6). The 

graphs of the coefficient occurring at the third power of a2 in frequency response function (Figs. 5 

and 7) explains the behavior of resonance curves. 
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