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Abstract: Physical and mathematical models of 3D nonautonomous single 

and double pendulums under gravity with axial excitation are presented. First 

body is suspended on a universal joint (also called Cardan-Hooke’s joint) and 

linked with a second body by second universal joint, so that the entire mechanical 

system has 5 degrees-of-freedom. Dimensions, masses, moments of inertia 

and positions of the centres of mass of both rigid bodies are known. Drive shaft 

of suspension joint is excited by external constant moment of force, which 

induces its axial rotation with constant angular velocity and rotation of both 

bodies. In addition, stiffness coefficients of joints are included into 

the mathematical model. Orientation of each body is described by three Euler 

angles. Position transformation from fixed coordinate system to appropriate local 

systems is governed by the corresponding rotation matrix. System of ordinary 

differential equations obtained from Lagrange’s equations is solved numerically 

with a help of specially developed simulation software. A few nonlinear system 

regimes are illustrated and discussed. 

1. Introduction 

There are a wide variety of a single and multi-body pendulum applications in history of our 

science. The first known mechanical system which includes a simple pendulum was a clock. Original 

accurate one was invented in 1657 by Christiaan Huygens (Dutch physicist, astronomer 

and mathematician), which was a breakthrough in time measuring. This invention was widely 

described by Huygens [1] himself, as well as Taylor and Van Kersen [2]. He also made several 

observations of pendulum mechanics, e.g. an resonance effect between two pendulums. Second 

famous pendulum applicant was Léon Foucault (physicist from France), whose novel mechanical 

construction showed consequence of Earth’s rotation on its axis. He caused a great sensation 

in the Panthéon in Paris in 1851 hanging his long and heavy pendulum (67 m, 28 kg) beneath 

the central dome. Phillips [3] explains this interesting mechanical effects in his publication and 

Aczel [4] aims at its historical background. Similar experimental measurement function 



of a pendulum was presented by British physicist Captain Henry Kater in 1817 constructing his 

reversible pendulum to precisely measure the acceleration of gravity. 

Nowadays, pendulums and systems of pendulums are used not only as a form of measuring 

equipment but more frequently as a model of complex mechanical systems, e.g. recovery 

and optimalization of human walking apparatus presented by Donelan et al. [5]. Pendulums are also 

used to find methods of stabilization and optimization, e.g. in seismology to find way to stabilize 

buildings during the earthquakes Matta and De Stefano [6], or even in quantum mechanics 

as it is shown by Richter et al. [7]. 

In this paper we present a novel three-dimensional physical and mathematical models of a single 

and double pendulums driven by external force in the gravitational field. Three degrees-of-freedom 

universal joints are very rarely used in applications, probably due to several problems with modeling 

and verification of real models. Besides the analytical calculation and numerical simulations, 

we show some drafts of experimental setup, which will be controlled by a specially written computer 

simulation software to confirm the validity of the computations. 

2. The model 

As introduced in previous section, we consider a pendulum in 3D space, driven by external 

gravitational field. First body is suspended on a universal joint (also called Cardan-Hook’s joint) 

and linked with second body by second universal joint so that the entire mechanical system has five 

degrees-of-freedom. We assume that both rigid bodies are identified, i.e. we know their geometrical 

properties, masses, moments of inertia and positions of the body centers. Also stiffness coefficients 

of joints are known and included in the mathematical model. For the purpose of faster calculation 

we assume that both joints are massless. Input shaft of first suspension joint is excited by external 

constant moment of force, which makes the system axially rotating with a constant angular velocity.  

Orientation of each body is described by three Euler angles φi, θi i ψi, where i is the index of each 

two bodies (see Fig. 1a). Position of each body in fixed coordinate system is governed by matrix 

of rotation R (see Eq. (1)) matching rotation by each Euler angles. Any rotation in 3D space 

can be combined from three basic rotations about corresponding orthogonal axes and represented 

by three rotation matrices (and three Euler angles) in several conventions (orders of transformations). 

In this paper we have chosen Y-X-Z order. 
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Construction details of the pendulum are shown in Figure 1a. Li and ei is the length and position 

of mass center Ci of the link (angular velocities ���, ���, ��� are shown in Figure 1b.) 



 

Figure 1. Coupled pendulums (a), and three Euler angles rotations  

with the corresponding angular velocities ���, ���, ���(b) 

To derive Lagrange’s equations of mechanical system, we define its kinetic energy of translation 

and rotation of each i-th links by 
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where mi denote the mass of i-th body, 
aCix&

 
is the linear velocity of i-th body mass center Ci around 

axis OXa, Iaj is the moment of inertia of i-th body around axis OXa, ωaCi is the angular velocity of i-th 

body around axis OXa in reference to its mass center position.. 

We also define potential energy of links and stiffness energy of joints as follows 
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where g is the gravitational acceleration and ki is i-th universal link stiffness coefficient. 

The external excitation momentum of force is constant and makes the first universal joint input 

shaft rotating about fixed axis OX3 with constant angular velocity ω, i.e. ψ1 = ω t. 

 

 



The Lagrange’s equations follows 
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where qi denote Euler’s angles φi and θi governing the angular position of i-th body. 

In that follows we study a single pendulum variant governed by the following ODEs 
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where �� = 	� + ���
. 

System of motion equations of a 3D double pendulum model have the following form 

� �� �� �� ���� ��� ��� �� � ����� = � �� �� �� ����, (6) 

where 

�� =
��
��
� sin� !(sin���(	�sin��� + 	�cos���) + 	�cos���) + cos� !(	�cos��� + 	�sin���) + 	� − �� ��sin2��sin��sin2 ! + �� + ���( ��(cos��(sin2 !(3cos2�� − 2cos���cos2�� − 1) + 4sin2��sin��cos2 !) + 4sin��(cos���sin2��sin ! + sin2��cos��cos !))cos !(	�cos��� + 	�sin���) + sin��(��cos (�� − ��)sin�� − ��sin��cos��sin !) + ��cos��cos��−��sin (�� − ��)sin��cos�� -.

..
/
, 

 

�� =
���
���
� �( ��0cos��(sin2 !(3cos2�� − 2cos���cos2�� − 1) + 4sin2��sin��cos2 !) + 4sin��(cos���sin2��sin ! + sin2��cos��cos !)1�� cos���(2(cos� !(sin���(	�sin��� + 	�cos���) + 	�cos���) + sin� !(	�cos��� + 	�sin���) + 	� + �� + ��) + ��sin2��sin��sin2 !) +                                           +sin���(cos���(	�sin��� + 	�cos���) + 	�sin��� + 	�) + ��cos��sin2��cos��(sin��sint! − cos��sin��cos !)cos��0	�cos���sin ! + sin��(	�sin��sin ! − ��cos��sin��) + cos��sin��(��sin��cos ! + ��sin��)1 + ��sin��cos��sin��cos���� cos(�� − ��) cos��cos�� -..

...
/
, 

 

�� = ���
� cos !(	�cos��� + 	�sin���) + sin��(�� cos(�� − ��) sin�� − ��sin��cos��sin !) + ��cos��cos��cos��0	�cos���sin ! + sin��(	�sin��sin ! − ��cos��sin��) + cos��sin��(��sin��cos ! + ��sin��)1 + ��sin��cos��sin��cos��	�cos��� + 	�sin��� + ��0 -..

/
, 

 

�� = 4−��sin (�� − ��)sin��cos����cos (�� − ��)cos��cos��0��cos���
5 

 

are the columns of symmetric matrix of left-side coefficients, �� = ���
, �� = 6��
, �3 = �161
, �4 = 	1 − 	3, and P1, P2, P3, P4 are the right sides of the equation system depending on 

angular position of first and second links ��, ��, ��, ��, and their first time derivatives ���, ���, �� �, ���. 

3. Method of solution 

To solve Lagrange’s equations (4) we use a symbolic computational software Wolfram 

Mathematica® (other numerical calculations were performed by our software specially written in 

CodeGear™ Delphi® 2009).  

The computing procedure consists of: (i) defining variables and basic rotation matrix R of both 

rigid bodies; (ii) defining kinetic, potential and stiffness energies; (iii) building and solving 

Lagrange’s equations; (iv) numerically solving obtained ordinary differential equations; (v) numerical 



analysis of the nonlinear dynamic of the pendulum

representation of the results.

4. Results 

We introduced a simplification

It made the motion equations 

dynamics effects. All presented computations are 

m1 = m2 = 1, L1 = L2 = 20, e

shape (of radius 0.1) of both pendulum links

in the figures). 

Besides the time history plot of each angle 

φ2(θ2(t)) of first link are reported

 

Figure 2 shows the single 

pendulum). 

Figure 2. Single pendulum motion 

 

 

Figure 4 shows the Poincaré 

ω = 0.5 and variable k. As in the previous 

of 40000. This series of cross sections reveals the

mechanical system. As we can see, when stiffness coefficient 

regular shape of attractors. 

analysis of the nonlinear dynamic of the pendulum; (vi) rendering proper plots and other graphic 

representation of the results. 

a simplification by neglecting kinetic energy of rotation of the second link. 

made the motion equations easier to investigate without losing much of the interesting 

All presented computations are carried out for the following fixed 

e1 = e2 = 10, I1 = I2 = 0.005 and I3 = 33, which corresponds to

of both pendulum links (other parameters and the values of ω and 

Besides the time history plot of each angle of each link, φi(θi(t)) plots and Poincaré 

are reported. 

single pendulum motion from t0 = 0 (it looks like a simple spherical 

Single pendulum motion – time history of angles φ1(t) and θ1(t), φ1

and Poincaré map φ1(θ1(t)) regarding 2π/ω. 

Poincaré maps φ1(θ1(t)) with a step of 2π/ω for constant angular velocity 

As in the previous presented computations we neglected first 5000 time steps 

cross sections reveals the potential nonlinear dynamic properties

As we can see, when stiffness coefficient k ≈ 35.005 the Poincaré 

ring proper plots and other graphic 

neglecting kinetic energy of rotation of the second link. 

much of the interesting nonlinear 

carried out for the following fixed parameters: 

33, which corresponds to cylindrical 

and k are shown 

Poincaré maps 

t looks like a simple spherical 

 

1(θ1(t))  

for constant angular velocity 

e neglected first 5000 time steps 

properties of this 

Poincaré maps shows 



Figure 4. Double pendulum motion 

k = [33..35,005..

 

 

 

 

Figure 4. Double pendulum motion – series of Poincaré maps x21(x22(t)) about 2π/ω for 

..35,005..37,5] (k value is showed in upper-left corners of the plots)

 

for ω = 0.5, 

left corners of the plots). 



Figure 4 shows the example plots obtained from the calculation of the 

Here we also neglected first 5000 time steps of 40000 to skip transitional period of

Figure 4. Double pendulum motion 

6. Conslusions 

Complex physical and mathematical model of 

system were introduced. All links are 

to several rotation matrix transformation to show the position of each link in moving coordinate 

system and the absolute one. Using the rotation matrix makes the computation very complex but also 

easy to future extend to describe more than 

of single link system shows the 

investigation of the double pendulum

coefficient k revealed the existence of some attractors 
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