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Abstract: Chaotic vibrations of flexible non-linear Euler-Bernoulli beams 
subjected to harmonic load and with various boundary conditions (symmetric and 
non-symmetric) are studied in this work. Reliability of results obtained is verified 
by the finite difference method (FDM) with spatial approximation of ( )2O c  and 

the finite element method (FEM) with the Bubnov-Galerkin approximation for 
various boundary conditions and various dynamics regimes (regular and non-
regular). The influence of boundary conditions on the Euler-Bernoulli beams 
dynamics is studied mainly, dynamic behavior vs. control parameters { }0,p qω  is 

reported, and scenarios of the system transition into chaos are illustrated.  

1. Introduction  

Owing to remarkable development of aeronautics, astronautics and ship building industry, the 

problem of an accurate and engineering-accepted beam dynamics (taking into account various 

boundary conditions and sign changeable loads) is of high importance. It is well known that the 

problems yielded by mechanical engineering require construction and analysis of their mathematical 

models. Modeling of flexible beam vibrations subjected to transversal and longitudinal sign-

changeable loads belongs to one of the hottest problems of today’s mechanics. Key targets of 

modeling and analysis of beams, plates and shells include studies of transition from regular to chaotic 

dynamics and vice versa, and the methods of dynamics control via external load action (see, for 

instance, references [1-5]).  

Our aim in this work was to compare results of two different methods of mathematical modeling, 

i.e. FDM and FEM, using the example of Euler-Bernoulli type flexible beams.  

 



2. Problem formulation  

A mathematical model of transversal 

Euler-Bernoulli beam vibrations with 

various boundary conditions is derived in 

this work. The Cartesian coordinates 

system XOZ (Figure 1) is introduced, and 

then in the space 
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middle surface displacement along the  axis. It is assumed that owing to the Euler-Bernoulli 

hypothesis a normal to the beam middle surface is still normal after the beam deformation: 
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Fig. 1. The investigated beam 
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∂∫  denotes the torque. The dynamics governing equations have the 

following form [6] 
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, 1ε , 2ε  – 

dissipation coefficients;  – transversal load; ( , )q q x t= E  – Young modulus; ρ , γ – density and 

weight density, respectively, and g  – acceleration of gravity. The following non-dimensional 

variables are introduced 
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Taking into account (2), system (1) takes the form  
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(3) 

where in the above bars over non-dimensional quantities are omitted.  

The following boundary conditions at the beam ends are attached to equations (3):  

Problem 1: “Clamping – clamping”: 
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Problem 2: “Hinge – hinge”: 
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Problem 3: “Hinge – clamping”: 
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Problem 4: “Hinge – free”: 
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Additionally, the following initial conditions are attached to equations (3) through (7): 
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3. Numerical solution and beam stability  

Investigation of nonlinear vibrations of constructions with various dynamic states (regular and/or 

chaotic) requires highly accurate computational algorithms and implementation of numerical 

methods. Since analytical methods devoted to the analysis of non-linear models in general do not 

exist at all, the only way is to apply various numerical approaches for verification of reliability of the 

results obtained. In this work, various numerical approaches are applied, namely direct one (FDM) 

and variation one (FEM) in the Bubnov-Galerkin form. A comparison is made for various boundary 

conditions and for various dynamic regimes. In all investigated cases the beam geometric and 

physical parameters are taken the same.  

4. FDM with approximation  ( )2O с

The infinite dimensional problem (3)-(8) can be reduced to the finite dimensional one via the finite 

difference method (FDM) with approximation ( )2O с . Namely, at each mesh node the following 

system of ordinary differential equations is obtained:  
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where n denotes the partition numbers regarding spatial coordinates, and 
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For  in equations (9) one has to take into consideration the so called out of contour 

points, which are defined by the following boundary conditions: for problem 1 

1, 1i i n= = −

iw w− = , whereas for 

problem 2 . The following additional equations are supplemented to equations (9) for 

problems 1-3:  

iw w− = − i
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and for problem 4: 
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The initial conditions (8) for the considered cases have the following difference form: 
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5. FEM with the Bubnov-Galerkin approximation 

The so far defined problem (3)-(8) is solved now via FEM. Owing to the FEM theory, in order to 

construct a beam element we need to introduce the testing functions. The following four degrees of 

freedom ( )1 2 1 2, , ,w w θ θ  are associated with the element and the following approximation polynomial 

is applied:  
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After defining the constant values, an approximation function has the following form: 
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 – form matrix; 

{ } ( θ θ Τ=W  – node displacement matrix; x lξ =  – non-dimensional quantity (local 

coordinate). 

Displacement approximation  has the following form: ( )u x

{ }uu = ⎢ ⎥⎣ ⎦N U ,  

where ( )1 ;u ξ ξ= −⎢ ⎥⎣ ⎦N { } ( )1 2u u Τ=U . 

Applying the Bubnov-Galerkin procedure and taking into account the introduced 

approximations, the following equations of FEM are obtained:  
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where ,i i iM C K  are the matrices of mass, damping and stiffness, respectively.  

6. Numerical results  

The considered beam is subjected to the action of the following transversal load: 

0 sin( )pq q tω= , (14) 

where pω  is the excitation frequency, and  is its amplitude. The studied system is dissipative, and 

the damping coefficients denoted by 

0q

1, 2ε ε  correspond to deflection w and displacement u, 

respectively. 

Next, we study numerically the beam dynamics and stability. Any method of beam partition 

allows us to approximate PDEs by ODEs. Integration of the latter ones can be divided into two 

groups, i.e. explicit and implicit methods. The explicit methods are mainly realized via the Runge-

Kutta schemes, and they are sufficient to solve our beam problem. It is mainly motivated by an 

observation that the considered Cauchy problem does not belong to stiff one, since in the frequency 

spectrum of eigenvalues of the Bernoulli-Euler type equations there are no frequencies differing in the 

order of magnitude (see for instance considerations in reference [7]). 

In order to verify the validity and accuracy of beam vibration simulations, both mentioned 

methods (FEM and FDM) are applied in problem 4, and the following fixed damping coefficients: 

1 21, 0ε ε= = , where 5.1pω =  is the excitation frequency, and 50
2
a
h

λ = =  denotes the relative 



beam length. The beam is subjected to the harmonic load action with the amplitude . The 

computation step regarding spatial coordinate equals c and time step is 

0q

tΔ . Both of them are yielded 

by the Runge principle. The stated problem is solved for beam partitions 40, 1 40n c= = , and with 

time step . In order to compare the numerical results, power spectra and time 

histories (signals)  are reported in Table 1 for 

33.9052 10t −Δ = ⋅

( )w t 0 100q =  (it corresponds to regular dynamics), and 

for q  (it corresponds to chaotic dynamics). 0 = 32200

(
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From Table 1 one may conclude that signals obtained via FEM and FDM practically coincide for 

the case of regular dynamics. In the case of chaotic dynamics, a signal produced by FDM is slightly 

delayed in comparison to that produced by FEM and possesses smaller amplitude. Frequency power 

spectra of vibrations practically either coincide in the case of regular dynamics or are close to each 

other in the case of chaotic dynamics. Hence, owing to the results included in Table 1, the results 



obtained via the FEM and FDM methods are reliable for either regular or chaotic beam dynamics 

analysis.  

In order to investigate beams dynamics driven by harmonic loads a special program package has 

been developed enabling construction of vibration type charts vs. control parameters { }0 , pq ω . For 

instance, in order to construct a chart with the resolution of 200 200×  points, one needs to solve a 

problem of dynamics, to analyze frequency power spectrum and finally to compute the Lapunov 

exponents for each choice of the control parameters. The developed algorithm enables also separation 

of the periodic dynamic zones, the Hopf bifurcation zones, quasi-periodic zones, as well as chaotic 

zones.  

In Table 2, the vibration type charts vs. the control parameters { 0, pq ω } for problem 4 are 

reported. Charts are constructed either with the application of FEM or FDM with the following fixed 

parameters 1 20.1, 0ε ε= =  for the beam length partition 40n = , and for the beam relative length 

50
2
a
h

λ = = . The excitation frequency changes from (chart I) to  (chart III), where 0ω / 2 03 / 2ω 0ω  

(chart II) denotes free frequency of the associated linear system (for problem 4 we have 0 5.1ω = ). A 

maximal excitation amplitude corresponds to the beam deflection of , and the charts are built 

with resolution 300 × 300. 
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Analysis of the obtained vibration type charts also supports reliability of the results obtained for 

various vibration regimes. Observe that the zones of chaotic vibrations vs. frequency obtained via 

FEM are wider than those obtained via FDM, whereas they coincide regarding the amplitude of 

vibrations. In order to get a vibration character chart vs. control parameters with resolution 3  00 300×



one has to carry out 9·104 computational variants. In the case of FEM, the computational time 

increases about 1.5 time comparing to the FDM application (for n = 40). The notation introduced in 

Table 2, regarding vibration type, is also used further. Computation of such a chart with the use of a 

Celeron 1700 processor takes 400 days. However, the knowledge of such charts enables a full system 

control.  

In order to confirm reliability of the results obtained for other types of boundary conditions, in 

Table 3 scales of vibration type beam character depending on the excitation amplitude 

 and for one value of 4
0 0, 6 10q ⎡∈ ⋅⎣ ⎤⎦ pω  are reported, and also dependences  are shown. max 0( )w q
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The problems are solved for the following parameters: 1 21, 0ε ε= = , 50
2
a
h

λ = = , 6.9pω = , 

and beam partition regarding spatial coordinate 40n = . 

We show how the boundary conditions essentially influence the system dynamics. For Problem 

1, the beam exhibits periodic and bifurcation type dynamics (either for FDM or for FEM). In this case 

there is no transition to chaotic dynamics. In graph  sudden jumps do not occur, and the 

function is smooth. In Problem 2, one may observe chaotic zones matched with bifurcation zones, but 

periodic dynamics is not exhibited. A function presenting maximal deflection vs. excitation amplitude 

is smooth only at the beginning (for ), where sudden jumps of  are not observed. 

Transition of the system from periodic to chaotic vibrations and vice versa, is characterized by sudden 

changes of  even for a small change of the excitation amplitude, and this is understood as 

stability loss of the system dynamics. 

max 0( )w q

4
0 (0, 1 10 )q ⋅ maxw

maxw

In the case of non-symmetric boundary conditions (Problem 3) one may observe that the system 

transition into chaotic state occurs for . For the given boundary conditions periodic 

dynamics occurs for . It is remarkable that within beam chaotic regime in the 

graph  not only sudden jumps appear but also the functions are discontinuous.  

4
0 2.5 10q > ⋅

)410⋅( 4
0 1.1 10 , 2.5q ∈ ⋅

max 0( )w q

7. Concluding remarks 

As the earlier results of local chaos investigations show, there are a few typical transition scenarios 

leading a dynamic system from periodicity into chaos, which sometimes are also combined. On the 

other hand, as it will be shown further, such transitions, however understood globally, may differ for 

the same system (here beam) for various boundary conditions. Mainly four typical transitions are well 

understood, namely the Landau-Hopf scenario, the Ruelle-Takens-Newhouse scenario, the 

Feigenbaum scenario and the Pomeau-Manneville scenario.  

Below, we investigate and define a beam scenario of transition into chaos for Problem 2. The 

numerical investigation is carried out by two methods: FEM and FDM. Table 4 shows the 

fundamental steps helping in scenario detection.  

An increasing amplitude of excitation causes the occurrence of two independent frequencies 

(quasi-periodicity), which are evidenced by FEM and FDM, and their estimated values are the same. 

A further increase of the excitation amplitude causes the occurrence of linear combinations of the 

earlier mentioned frequencies 1 2, ,pω ω ω .  
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For example, let us study the system behavior for 0 11000q =  applying FDM. It is remarkable 

that the system dynamics is governed by a linear combination of frequencies 2 4, ,pω ω ω . The 

following three frequency groups are distinguished: 4 9 7, ,ω ω ω  – the first group, where frequency 

values differ by the amount of frequency 4ω ; 1 10 2 11, , ,ω ω ω ω  – the second group, where the 

frequencies differ from each other either by 4ω , or by 4 2ω ⋅ ; 8 5 3,, , pω ω ω ω  – the third group, where 

the linear combination of frequencies is preserved. Observe that an analogous system behavior is also 

monitored for  in the case of FEM application.  0 8700q =

A further increase of q0 yields more evident changes of the earlier mentioned frequencies, and 

finally all of the frequencies become linearly dependent. For 0 20000q =  (FDM) and for  

(FEM) all frequency distances are equal and the difference between two neighborhoods once achieves 

1.062. Observe that for , in a frequency power spectrum, only frequency of excitation 

0 19900q =

0 100q =



6.9pω =

0 40000q =

 is exhibited. An increase of the amplitude of external excitation causes variation of 

frequencies. The mentioned frequencies again appear and disappear. As a result, in the frequency 

spectra, either for FDM or for FEM, one may distinguish six linearly independent groups of 

frequencies, each group containing linearly dependent frequencies which differ by the amount of 

0.29. Then, when all of the born frequencies become linearly dependent, the system dynamics is 

transited into chaotic state, which is clearly manifested by the system frequency spectra for 

 (FDM) and  (FEM). 0 39000q =

Finally, taking into account the previous description and comments regarding the scenario of 

transition of our beam into chaotic dynamics monitored via FEM and FDM, the detected scenario fits 

to the well known Ruelle-Takens-Newhouse scenario, where in the latter classical case the transition 

is realized via two independent frequencies and their linear combinations.  
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