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Abstract: A theory of nonlinear interaction of two-layered beams (part I) and 
plates (part II) taking into account design, geometric and physical nonlinearities 
is developed. Designed nonlinearity concerns activation and removal of one-
sided constraints. Physical nonlinearity is associated with nonlinear relations be-
tween strains and stresses, whereas geometric nonlinearity is connected with 
nonlinear relations between deformations and displacements in the form pro-
posed by von Karman for each of the beams. The theory is mainly developed in 
the first approximation on the Euler-Bernoulli hypothesis. When solving contact 
problems, the Winkler type relation between clamping and contact pressure is 
applied allowing the contact pressure to be removed from the quantities being 
sought. In order to solve strongly nonlinear partial differential equations, the fi-
nite difference method regarding space and time coordinates is applied. On each 
time step the iteration procedure, which improves the contact area between 
beams is applied and also the method of changeable stiffness parameters is used. 
A computational example regarding dynamic interaction of two beams depending 
on a gap between beams is given. Each beam is subjected to transversal sign-
changeable load, and the upper beam is hinged, whereas the bottom beam is 
clamped. Analysis of chaotic vibrations of the beams package is carried out using 
the method of nonlinear dynamics and qualitative theory of differential equations. 
It has been shown that for some fixed system parameters and with an increase of 
the external load amplitude synchronization between two beams occurs with the 
upper beam vibration frequency. A qualitative analysis of the interaction of two 
non-coupled beams is also extended to the study of non-coupled plates. Charts of 
beam vibration types vs. control parameters { }0q , pω , i.e. the frequency and am-

plitude of excitation are constructed. The similar like competitions have been re-
ported in the case of two-layered plates. 

1. Introduction 

In part III of the paper we are aimed on analysis of regular and chaotic dynamics of two-layered 

plates with geometric, physical and design nonlinearities. 



In references [1]-[3] the approach devoted to solutions of the contact problems of nonlinear 

shells theory is proposed. It consists in removal of the contact pressure  from the unknown func-

tions with a help of the Winkler type coupling. The mentioned approach is equivalent to that of for-

mula (4.p.I), and it allows us to neglect the tedious task of constructing the Green function, and hence 

solutions can be found in equilibrium equations (1.p.I).  

kq

On the other hand, a study of chaotic vibrations of the contact problems of nonlinear mechanics 

of thin-walled structures is rather rarely presented [4]-[5]. The investigation of chaotic vibrations of 

nonlinear plates and shells is discussed in works [6]-[12]. However, modeling and analysis of chaotic 

vibrations of two-layered beams with the mentioned three types of nonlinearity belongs rather to pio-

neering works.  

2. Chaotic vibrations of two uncoupled plates  

Let us derive a system of differential equations of two layered uncoupled plates, when each of the 

layers satisfies the kinematic Kirchhoff hypothesis. The relative position of plates in space with the 

given coordinates xyzO , is defined in the following way: a middle surface of the first plate lies in the 

, and second – in the 0z = ( )1 2
1
2 kz hδ δ= − − −  plane, where iδ  is the thickness of " -th plate, and 

 denotes the distance between two plates in a non-deformable state.  
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The system of governing equations is [4] 
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with the following attached initial conditions  

( ) (
0

, , ,i it
w t x y f x y

=
= ) ,        (

0

,i
i

t

w F x y
t

=

∂
=

∂
) ,     ( )1,2 ,i =  (2) 

and system (1)-(2) is supplemented by one of the boundary conditions  
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where ( ) ( )1 0, , sin pq t x y q tω=  is the function of external load acing on the first plate, .  2 0q =

 
Fig. 1. Two plates with a gap 

 

Let the plates occupy in 2R  the space { }( , ) 0 , 0 , ( 1,2)i x y x a y b iΩ = ≤ ≤ ≤ ≤ = , and  be 

the associated space boundary in  

i∂Ω

2R , К is the known constant, and ( ), ,x y tΨ  is the contact space 

 indicator:  ∗Ω

( ) ( ) ( )( )1 21 , , , ,
, ,

2
1sign w x y t w x y t h

x y t
= −

Ψ =
−

. 

As it has already been mentioned in reference [5], the differential operator ( )( ), ,iA w x y t  

( )1,2i =  is nonlinear in general, but in this work each plate is treated as plastic and geometrically 

linear, and therefore  
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System (1) – (6) is transformed into a non-dimensional form through the following parameters  
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System (1) is given in the following non-dimensional form  
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where bars are already omitted. 

The obtained PDEs are reduced to the second order ODEs via the finite difference method with 

approximation ( )2O h . Further, the system is transformed to the first order ODEs and then solved via 

the fourth order Runge-Kutta method. Space and time steps are chosen via the Runge principle and 

, whereas grid step is 23х23 of space 0.001tΔ = Ω . 

Next, we study vibrations of two non-welded plates of constant thickness ( 1h h2= ), made from 

an isotropic material with Poisson’s coefficient 0.3ν =  subjected to uniformly distributed sign-

changeable load. System behavior is investigated for two types of the boundary conditions (clamping-

clamping (3) and clamping-hinge (4)) and for various values of the gap between plates (  and 

). In order to investigate two layered beams behavior, charts of vibration character are con-

structed (Table 1). Three vertical lines are introduced: 

0.01kh =

0.1kh =

0pω ω=  frequency of linear vibration, left 

and right lines correspond to frequencies 
2

pω
pω −  and 

2
p

p

ω
ω + , respectively. The charts illustrate 

the whole possible nonlinear dynamics of two layered non-welded beams. 

Analysis of the system dynamics for various gap parameters and boundary conditions showed 

increase of the gap between plates (Table 1а, b) and decreases of the chaotic vibrations zones, 

whereas zones of periodic and quasi-periodic vibrations are increased. In the case of boundary condi-

tions (Table 1а, с) one may observe that the boundary condition change of the second beam (from 

clamping to hinge) causes an essential increase of chaotic zones, and the periodic and quasi-periodic 

zones decrease.  
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Notation 

 Periodic vibrations  Period doubling bifurcation 

 Quasi-periodic vibrations   Chaos 
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3. Concluding remarks 

The theory of nonlinear interaction of two-layered beams have been introduced. Then a series of 

computational examples regarding regular, bifurcational and chaotic dynamics of the investigated 

objects have been reported. 
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