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Abstract: The presented work is first from the two devoted to modeling and 
analytical/numerical analysis of tribological processes appearing on the contact 
surface of shields of a mechanical friction clutch. Although the considered 
problems have been already studied earlier, however, simplified mathematical 
models have been used and applied. Unlike previous works, our work takes into 
account elasticity and wear of material of shields rubbing themselves, the 
presented mathematical model enables analysis of tribological processes in non-
stationary conditions, and a general non-linear differential model of wear is 
applied. Analytical/numerical analysis is carried out with the qualitative and 
quantitative theories of differential and integral equations, including Laplace 
transformation. Many interesting results are obtained, illustrated and discussed. 

1. Introduction 

Contact phenomena on the joint of rubbing surfaces as friction and wear have the significant 

influence on the endurance and the speed of wearing of elements of a mechanical system and its 

dynamics. These issues in different kinds of friction connections were an object of many researchers 

and can be found in the works [1], [2], [4], [5], [6], [7], and others. In many monographs [3], [4], [5], 

[7] from the scope of friction and wear also essential testing methods and problems of the theory of 

wear in such systems were described. 

Although the considered in this work problems have been already studied earlier, however, 

simplified mathematical models have been used and applied, and in addition (as a rule) individually. 

Namely: (i) in general clutches were treated as a friction connection of rigid bodies and hence an 

effect of wear and elasticity (flexibility) of material of contacting shields was omitted; (ii) most often 

wear was considered in stationary conditions; (iii) in contact issues during computer simulations an 

empirical linear wear model was most often used; (iv) for the simplification real contact pressure 

distribution was being omitted taking the identical pressure in each point of contact surface. 



In this work we take into account elasticity and wear of material of shields rubbing themselves. 

The presented mathematical model enables analysis of tribological processes in non-stationary 

conditions. General non-linear model of wear is applied, where wear is modeled via non-linear 

(power) type function of contact pressure and relative sliding velocity with rates dependent on the 

model of wear, the step of lubricating and spreading on contacting surfaces. Equations modeling 

contact pressure (including its surface distribution) on the contact surface of shields are solved. 

2. The Models of Wear and Mechanical Friction Clutch 

In this work we assume that the model of wear  on the joint of rubbing surfaces has the form w

αβ PVK
dt
dw

r= , (1) 

where K  is a coefficient of wear of material,  is relative sliding velocity of surfaces touching 

each other,  is contact pressure and 

rV

P α , β  are rates dependent on the model of wear, the step of 

lubricating and spreading on contacting surfaces. 

Figure 1 shows the considered model of the mechanical friction clutch. 

 
Fig. 1. Model of the considered mechanical friction clutch. 

 

The friction contact between shields occurs in [ ]21, RRR∈ . Shields are being pressed with axial 

force , and in each point of the joint of the surface of shields contact pressure is equal to 

. Coefficients of wear of material for the left and right shield are  and , however 

coefficients of the resilience of material of these shields are  and , respectively. 
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Let us enrol equations on wear for the left shield  and the right shield  and 

axial displacements ,  of each point of the surface of shields. We obtain 
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Conditions of the contact of shields in the clutch have the form 
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where )(tΕ is a function describing distance between shields. After differentiating of equation (4) 

with respect to the time and for 21 kkk += ,  and )(
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Moreover, the following should be satisfied 
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Multiplying the equation (5) by , integrating in interval RdR [ ]21, RRR∈  and taking into account 

differentiation regarding time equation (6) is cast to the form 
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Comparing relations (5) and (7) one gets 

dt
tdQ

RR
kdRtRPRt

RR
KtRPtRK

t
tRPk

R

R
r

w

r
w )(

)(
),()(2),()(),(

2
1

2
2

1
2
1

2
2

)(
)(

2

1
−

+
−

=+
∂

∂ ∫ +

π
ΩΩ αββαββ . (8) 

The friction torque moved by the clutch with a coefficient of friction ))(,( tR rΩμ  between shields is 

as follows 
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3. Analytical Analysis 

For  wear , and according to equation (4) the relation 0=t 0)0,()0,()0,( )(
2
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doesn't depend on R  and in consequence  it doesn't also depend on )0,(RP R . Taking into account 

this observation one obtains 
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Then, on the basis of the relations (10) and (11) we have 
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On the basis of the equation (7) for 0=t  and after the appropriate transformations we obtain 
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The friction torque moved by the clutch in the initial moment 0=t  is as follows 
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For more further analytical analysis let us introduce the following simplifications: 

, , .)( constQtQ == .)( constt rr == ΩΩ 1== βα . Then applying the Laplace transformation to 

equation (8), and after the appropriate transformations we get 
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On the basis of the statement 
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and after next transformations we get 
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In what follows we are going to solve integral equation (17) cast into the form 

R
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We prove first, that expression (18) is a solution to equation (17): 

R
ARR

A
RRR

RdRA
RRR

dR
R
AR

RRRR
A

R

R

R

R

=
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛ −

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
= ∫∫ 2

212121 2
1

2
2

2
1

2
2

2
1

2
2

2
2
1

2
2

2

1

2

1

. (19) 

We are aimed on constant A  determination. Substituting expression (18) to equation (6), we obtain 

constant )1R(2 2RQA −= π , and finally we get 
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Let us place now relation (20) into equation (7). After appropriate transformations we receive 
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Described in the above analytical analysis allows to appoint contact pressure distribution , 

distance between pressed shields 

)0,(RP

)0(Ε , and the speed of approaching of shields dtd )0(Ε  in the 

initial moment 0=t . After accepting additional simplifications, we also estimated the contact 

pressure distribution , and the speed of approaching of shields ),( ∞RP dtd )(∞Ε . Initial wears in 

each points of the contact of shields are equal zero. 

4. Non-Dimensional Form 

Let us introduce the following similarity coefficients: , , , , , , non-dimensional 

time 
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*tt=τ , non-dimensional geometrical parameter )1R( 2R −)1R(R −r = , and other non-

dimensional parameters: ))βρ1( +(1
***2

)(
1

αββ Ω= − kPtRK wl , ))21(2
2* ρ+RP()( 2

* πQ 1 ρ+2 =l , 

))1(( ****2
)(

1
)(

1
βαββ ρΩ += UPtRKk ww , ))1(( ****2

)(
2

)(
2

βαββ ρΩ += UPtRKk ww , 

)(
2

)(
1

)( www kkk += , ))1((2 3
**

3
2 ρπ += MPRk fr , )( 121 RRR −=ρ , and finally the following non-

dimensional functions: **12 )),)(((),( PtrRRPrp τρτ +−= , ** )()( QtQq ττ = , 

** )()( MtMF frfr ττ = , , ))(),)((())(,( *12 τωΩρμτω rr rRRrf +−= ** )()( ΩτΩτω trr = , 

**12
)(

1
)(

1 )),)(((),( UtrRRUru ww τρτ +−= , **12
)(

2
)(

2 )),)(((),( UtrRRUru ww τρτ +−= . 

Then, we can obtain the associated non-dimensional relations 
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5. Numerical Computations 

In this section, we present numerical computations applied to solve equations (22) - (24). For solving 

dius these equations, we divided the length of non-dimensional ra r  o s by taking n even segment m  
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step. We assumed the following values of 

6. Numerical and Analytical Results 

Numerical calculations are carried out using the fourth order Runge-Kutta method with constant time 

similarity coefficients: rΩΩ =* , ** 1 Ω=t , )0(* QQ = , 

)0(* Ε=U , )0,(* RPP = ,  )0(frMM =* , and the following initial non-dimensional param tee rs:

2.0) =τ , 2.0=(ωr ρ , 5.01 =l , 1.0)( =wk , 2=frk , 1.0))(,( =τωrrf , 1=α , 1=β , 100=m . 

 Le us study first contact pressure distributions (Figure 2) as the function of the non-dimensional 

radius 

t 

r  of shields for different values of the β  parameter. In the initial mom 0=ent τ , before 

beginning of the process of wearing of shields, the contact pressure distrib )0,(rp  is identical 

on the entire contact sur ce. However, contact pr ssure distributions ),(

ution

fa e

 

∞rp  are different for 

different values of the β  parameter. Parameter α  doesn’t influence on the contact pressure 

distribution, however it has influence on d of settling of this distribution. For cases of the 

contact pressure distributions )0,(rp  and ),(

the spee

∞rp , and for the 1=β  numerical calculations overlaps 

with theoretical results. Figure 3 shows relations of the friction torque moved by the clutch for 

different values of the geometrical parameter ρ . As can be seen, amendments of the contact pressure 

distribution during the wear causing reducing of the friction torque moved by the clutch. 
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Fig. 2. Contact pressures in equilibrium. Fig. 3. Changes of the friction torque. 

 

 Figure 4 shows contact pressure distributions in the equilibrium, and Figure 5 shows wear 

distributions in the transient state (here 10=τ ) for different values of the geometrical parameter ρ . 

From the reported relations one may see, that these distributions depend on this parameter, which 

determines the geometry of the considered system. For smaller values of the ρ  parameter differences 

of the values of both contact pressure and wear between contact surface borders (  and 0=r 1=r ) 

are bigger. 
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Fig. 4. Contact pressures in equilibrium. Fig. 5. Wears in transient state. 

 

 Figure 6 shows contact pressure distributions, whereas Figure 7 shows wear distributions in the 

transient state (here 10=τ ) for different values of the parameter β . From described relations, we 

can see, that these distributions depend on this parameter. For larger values of the β  parameter 

differences of the values of contact pressure between contact surface borders ( 0=r  and 1=r ) are 

bigger, and differences of the values of wear between contact surface borders for greater values of the 

β  parameter are smaller. 
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Fig. 6. Contact pressures in transient state. Fig. 7. Wears in transient state. 

7. Conclusions 

The considered in this work issues allow to modeling wear processes on the contact surface of a 

mechanical friction clutch. Unlike many previous works, here friction clutch was treated as a friction 

connection of elastic bodies, and hence an effect of wear and elasticity (flexibility) of material of 

contacting shields was considered. Here general non-linear differential model of wear is applied, 

where wear is modeled via non-linear function of contact pressure and relative sliding velocity. The 

presented modeling allows considering wear in non-stationary conditions and allows for obtaining 

real contact pressure distribution on the contact surface. 
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