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Abstract: A variety approaches for continuous approximation of a discrete medium 
are studied using an example of 1D chain of linear oscillators.  

1. Introduction 

It is well-known that equations governing mechanical behavior of continuous media omit their 

discrete properties. On the other hand, recent results obtained particularly in the field of high 

technology materials point out an importance of micro-structural effects exhibited by real material 

behavior. The discrete-types phenomena in question play a key role during modeling of various 

crystal, polymer, and composite materials, in fracture and damage mechanics [1-5]. The observed 

dispersion of waves also in granular materials [3] belongs to the examples of the micro-structural 

important role influencing material behavior mentioned earlier. The micro-structured material 

property should be taken into account while analyzing a local material deformation. Finally, the 

problem studied in this paper also refers to modeling of the nano-effects.  

In order to construct the continuous models in physics the statistical modeling is applied, mainly 

addressing the statistical averaging approach. However, development of this approach has been 

partially slowed down owing to the unexpected mathematical difficulties that occurred. The same 

observation can be made in the case of so-called G-homogenization. On the other hand, in many 

cases the phenomenological approach is used. Namely, some of additional terms are introduced into 

either energy functional or into the governing relations, and a structure as well as property of the 

introduced terms is a priori known. In what follows this way of investigation will be further used in 

our research.  

In addition, we study using numerical approaches the applicability of a variety of approximation 

models, which qualitatively consist of observed in reality discrete type behaviors [6-9] on a basis of 

the 1D linear wave processes propagation.  



2. Discrete model 

Let us study wave propagation in the discrete chain of linked masses shown in Figure 1. Assume that 

at time instant t = 0 a unit force acts on a mass with number 0 in direction of the axis x. Then 

dynamics governing equations regarding displacements ky  can be obtained in the following way [10] 

(we take m = 1, c = 1 for simplicity of our considerations): 
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Figure 1. Infinite chain of masses. 
 
In order to solve equations (1),(2) Fourier transformation is applied. Namely, multiplying left 

and right hand sides of equations (1),(2) by and adding them one gets [10] exp( )iqx
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Solving equation (3) and applying inversed Fourier transformation one gets relation governing 
wave velocity propagation of the form  
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3. The classical continuous approximation 

Applying the classical continuous approximation instead of system (1), (2), the following wave 

equation with the Dirac delta ( )xδ  right hand-side is obtained in the following form: 
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Now, applying the Fourier transformation regarding x and the Laplace transformation regarding 

t, the following velocity governing equation is derived  

   0.5 ( ),∂
= −

∂
u H t x
t

                                                 (6) 

where  denotes the Heaviside function. As it has been mentioned in reference [10], a wave 

propagated in a discrete medium differs from that propagated in a continual medium via: (i) 

occurrence of vibrations being successively damped at x = const; (ii) infinite velocity of perturbations 

(...)H



propagation (owing to assumption of a rapid approaching masses interaction during their draw near), 

occurrence and vanish of the so-called quasi-front domain, where although the stresses increase 

relatively sharp, but in a continuous way (velocities and deformations exponentially decay while the 

quasi-front −x t  increases finally becoming negligibly small). 

4. Intermediate continuous model  

First of all, we examine the intermediate continuous model [6] governed by the following equation  
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Applying both Fourier (regarding x) and Laplace (regarding t) transformations, the following 

formula governing wave velocity propagation is obtained  
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5. Quasi-continuous approximation 

In reference [7] the following improved model, further referred as the quasi-continuous 

approximation, has been proposed  
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where  b = 1/12. 

The associated wave velocity propagation follows  
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6. Improved quasi-continuous approximation  

In references [1, 8, 9] the following continuous model is proposed  
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where  2
1 1 4 / .π= −b  

In this case the associated wave velocity propagation reads  



 

2
1/ 2 2

1
3

0

1 (2 sin )
1( , ) 1 1cos(2 ) ,

π

π π

+
+∂

= =
∂ ∫

zb z sin t z
b zu x t xz dz a

t z
                    (12) 

where  2
1 1 4 / .π= −b  

7. Numerical results and conclusions 

Results of computations of are reported in Figures 2 (a-c) and 3 (а-c). 1 2 3, , ,a a a a
One may conclude that models (7) and (9) give the same results. On the other hand, model (11) 
exhibits the best qualitative coincidence.  
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