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Abstract: A frequency equation for the vibration of an engine seating and an equation 
for pressure under the bottom of the engine are obtained. 

1. Introduction 

In general, the problem of suppressing engine seating vibrations is reduced to that of a 3D contact 

dynamical problem [1]. Although in general one may apply numerical approaches to solve a 3D 

problem, say FEM, but even using high tech computers this approach causes various difficulties to 

get a reliable solution in an economical way. 

From the point of view of an analytical treatment the so far applied methods may be divided 

into mathematically rigorous and approximate analytical techniques. Methods of the first group are 

associated with the application of integral equations [2], and therefore it is necessary to prove the 

existence and uniqueness theorems. Next, the discussed equations are usually reduced to coupled 

integral equations which can be transformed to the second order Fredholm type equations by using 

various approaches (for instance, applying the method of orthogonal polynomials) to get finally a 

system of linear algebraic equations. The latter ones are tested according to their regularity and then a 

truncated system is solved numerically. 

Practically oriented computational methods include already earlier introduced various 

physically motivated simplifications. For instance, the engine seating mass is assumed to be 

concentrated to a point, or a ground reaction is uniformly distributed, and so on. The latter approach 

is commonly accepted in engineering society. Models proposed by Winkler [3], Pasternak [4] and 

Vlasov [5] do not allow us to get sufficiently accurate results, whereas the model of an elastic half-

plane (or an elastic half-space) is not adequately complex in comparison with simplifications 

introduced for the foundation. On the other hand when inertial properties of foundation are neglected 

while computing vertical vibrations of a plate-type engine, the seating may cause serious errors, as 



both experimental and numerical investigations show [6,7]. Owing to the critical state-of-the art 

review carried out, the model proposed by Muravskii [8] seems to be one of the most appropriate 

ones for engineering as it exhibits high practical accuracy of the ground modeling with its 

simultaneous simplicity. Here we propose some natural modification of this model. 

2. Static loading 

Next, we consider the plane problem of elasticity for a strip subjected to a rigid punch action (Fig. 1).  
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Figure 1. Physical model of a rigid foundation on an elastic layer 

 

The following computational scheme is applied (Fig. 2): on zone I strip is reduced to a rod with 

stiffness ЕF, where , and Е denotes Young modulus; zones II and III are associated with the 

Muravskii model [8]. The problem defined so far is governed by the following equations  
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where ( )δ x  is the Dirac function; G is the shear modulus; 2= +p hp Mg . 

A solution to the boundary value problem (1) – (3) is sought in the form satisfying the boundary 

conditions (3): 
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Substituting (4) to (1) and after splitting regarding cosines one gets 
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Figure 2. Computational scheme of the static problem 

 

Applying the Fourier transformation  
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Using an inverse Fourier transformation governed by formula (6) one finds , and then 

 is defined.  
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Finally the function ( ),U x y  may be written as follows 
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where: ,E
G

α =  ( )2 .πα=d hH F  

Displacement of the engine seating is given by formula (8) for х = у = 0 and after a summation 

procedure owing to formula 5.1.6.10 from reference [12] one obtains 
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where  is the so called psi-function; ( )ψ z ( ) ( )
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 ( )Г z  is the gamma-function; C is the 

Euler constant, С = 0.5772156649… . 

Let us define now pressure under the engine seating bottom 
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Since differentiation of the series (8) term by term is not allowed, first A.N.Krylov’s method is 

applied [13]. We will use the identity 
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Finally, combine formula (8) for x = 0 and (11) to get 
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The series in expression (12) can be differentiated term by term and after a substitution of 

formula (12) into (10) one gets 
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Furthermore, shear stress for x = 0 is 

  ( )
0

1 .
2 2

τ
=

= =yy y
x

EFy U T  (14) 

In order to allow the term-by-term differentiation, we derive from the right hand side of (13) the 

following expression  
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For summation of the series, formula 5.4.2.12 from reference [12] is used.  

Now, applying formulas (13) – (15), one gets 
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3. Dynamic loading 

Next, we consider a BVP governed by the following equations (Fig. 3)  
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 U = 0    for     у = Н;  (19) 
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We aimed at natural vibrations assuming  

 ( ) ( ), exp .ω=U U x y i t   (20) 
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Figure 3. Computational model of dynamical problem 
 

Substituting (20) into the BVP (17) – (19) one gets 
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 ( ) ( ) 2δ δ⎡ + ⎤ = −⎣ ⎦ yE h F x U M x Uω    for у = 0;  (22) 

 U = 0   or   у = Н;  (23) 

 0    for    →U .→∞x  (24) 

Substituting the solution to the BVP (21) – (24) in the form of (4) one obtains  
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Now, applying the Fourier transformation (6), one gets 
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Application of the inversing Fourier transformation defined by formula (6) yields 

( )
( )

2
2

2 22
2 2

0
2

exp .
4 2 2

n

n

nM EF U
H E n H E nU x x

Gh G G G H G

πω
π ρ π ρω ω

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟ ⎛ ⎞⎝ ⎠⎢ ⎥ ⎛ ⎞ ⎛ ⎞⎣ ⎦ ⎜ ⎟= × − × −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
−  

Taking х = 0 the following formula for a frequency of natural vibration is finally obtained 
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4. Conclusions 

Modification of the Muravskii foundation model allows us to obtain a simple analytical solution of 

the static and dynamic problem for engine seating on elastic foundations. 
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