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Abstract
Nonlinear dynamics of a real plane and periodically

forced triple pendulum is investigated both experimen-
tally and numerically. Mathematical modeling includes
details taking into account some characteristic features
as well as some imperfections of the real system. Pa-
rameters of the model are obtained by estimation from
the experimental data. Then the experimental and nu-
merical analysis of the system is performed.
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1 Introduction
A pendulum as a simple nonlinear systems is still a

subject of interest of scientists from all the world. It
is caused by simplicity of that system on the one hand,
and due to many fundamental and spectacular phenom-
ena exhibited by a single pendulum on the other hand.
In mechanics and physics investigations of single and
coupled pendulums are widely applied. Lately, even
the monograph on the pendulum has been published
[Baker, 2005]. This is a large study on this simple sys-
tem also from the historical point of view.
Although a single or a double pendulum (in their dif-

ferent forms) are quite often studied experimentally
[Blackburn et al., 1987; Bishop and Sudor, 1998], a
triple physical pendulum is rather rarely presented in
literature from a point of view of real experimental
object. For example, in the work [Zhu and Ishitobi,
1999] the triple pendulum excited by horizontal har-
monic motion of the pendulum frame is presented and
a few examples of chaotic attractors are reported. Ex-
perimental rigs of any pendulums are still of interest
of many researchers dealing with dynamics of con-
tinuous multi degrees-of-freedom mechanical systems.
The model having such a properties has been analyzed
in work [Galan et al., 2005] It consists of a chain of N

identical pendulums coupled by dumped elastic joints
subject to vertical sinusoidal forcing on its base.
In February, 2005, in the Department of Automat-

ics and Biomechanics, the experimental rig of triple
physical pendulum was finished and activated. This
stand has been constructed and built in order to inves-
tigate experimentally various phenomena of nonlinear
dynamics, including regular and chaotic motions, bi-
furcations, coexisting attractors, etc. In order to have
more deep insight into dynamics of the real pendulum,
the corresponding mathematical model is required. In
the work [Awrejcewicz et al., 2005] the suitable math-
ematical modeling and numerical analysis have been
performed, where the viscous damping in the pendu-
lum joints (constructed by the use of rolling bearings)
has been assumed. In the next step [Awrejcewicz et al.,
2008], we have also taken into account the dry friction
in the joints with many details and variants. Here we
present the model of friction taking into account only
essential details.

2 Experimental rig
The experimental rig (see Fig. 1) of the triple physical

pendulum consists of the following subsystems: pen-
dulum, driving subsystem and the measurement sub-
system. It is assumed that the pendulum is moving in a
plane.
The links (1, 2, 3) are suspended on the frame (4) and

joined by the use of radial and axial needle bearings.
The first link is forced by a special direct-current mo-
tor of our own construction with optical commutation
consisting of two stators (6) and two rotors (5). The
construction ensures avoiding the skewing of the struc-
ture and forming the forces and moments in planes dif-
ferent that the plane of the assumed pendulum motion.
On the other hand the construction allows the full rota-
tions of all the links of the pendulum.
The voltage conveyed to the engine inductors is con-

trolled by the use of special digital system of our
own construction together with precise signal genera-



Figure 1. Experimental rig: 1, 2, 3 - links; 4 - stand; 5 - rotors; 6 -

stators; 7, 8, 9 - rotational potentiometers.

tor HAMEG. As a result the square-shape in time forc-
ing (but with some assymmetry - see the next sections)
with adjustable frequency and desired amplitude is ob-
tained.
The measurement of the angular position of the three

links is realized by the use of the precise rotational
potentiometers (7, 8, 9). Then the LabView measure-
programming system is used for experimental data ac-
quisition and presentation on a computer.

3 Mathematical model

Figure 2. Physical model.

Details on physical modeling, i.e. idealized physical
concept (presented in Fig. 2) of real pendulum pre-

sented in Fig. 1, can be found in works [Awrejcewicz
et al., 2005;?]. The system is idealized since it is
assumed that it is an ideally plane system of coupled
links, moving in the vacuum with the assumed model of
friction in joints. The system is governed by the follow-
ing set of differential equations (for more see [Awre-
jcewicz et al., 2005;?]):
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where the pendulum position is described by the use of
three anglesψi (i = 1, 2, 3) and where

cij = cos(ψi − ψj), sij = sin(ψi − ψj), (2)

and
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are the moments of resistance in the corresponding
joints and consinsting of two parts: dry friction and
viscous damping. The dry friction moment does not de-
pend on the loading of the corresponding bearing and
the sign function is approximated by the arctan func-
tion. The parameterc is the damping coefficient com-
mon for the second and third joint while in the first joint
we assume damping two times greater (since the first
joint is built by the use of four bearings, while each
other joint contain two bearings).
In the work [Awrejcewicz et al., 2008] more complex

model of friction has been investigated where the dry
friction moment consists of two part: the first one pro-
portional to the normal loading in the bearing and the
second one beeing constant (and present also in the lack
of loading). Moreover the friction is a function of rel-
ative velocity due to the Stribeck’s curve. As a result
of those investigations we have concluded that in our
case the model of friction can be simplified to the one
presented by the Eq. (3), without any loss of precision.
The external excitation in the pendulum model can be

an arbitrary time function, and in particular, it can be
the same function as applied (and recorded to a file)
in real system (it is useful in the parameter estimation



process). On the other hand, it is possible to apply a
forcing due to the following mathematical description:

Me(t) =

{
q if ωt+ φ0 mod 2π ≤ 2πa
−q if ωt+ φ0 mod 2π > 2πa

, (4)

which imitates the square-shape in time forcing (ap-
plied in the real pendulum), with adjustable angular
velocity ω, initial phaseφ0, amplitudeq and the co-
efficient a (for a 6= 0.5 there is an asymmetry in the
forcing, as mentioned in section 2).

4 Model parameters

Table 1. Parameter estimations.

A1 B1 C1

B1 [kg·cm2] 1650.3 1634.7 1641.3

B2 [kg·cm2] 1386.3 1378.7 1390.9

B3 [kg·cm2] 163.32 166.56 164.50

N12 [kg·cm2] 1111.2 1104.5 1112.6

N12 [kg·cm2] 198.99 201.47 199.92

N23 [kg·cm2] 255.96 259.16 257.15

M1 [N·cm] 879.76 874.38 875.00

M2 [N·cm] 632.37 628.53 633.13

T1 [N·mm] 56.83 72.73 97.53

T2 [N·mm] 25.06 15.16 13.77

T3 [N·mm] 11.07 4.58 6.61

c [N·mm·s] 0 1.057 0.532

ε [s] 1000 1000 6.77

103·Fcr [rad2] 0.3255 0.3059 0.2809

The model parameters are estimated by the global
minimum searching of the criterion-function of the
model and real system matching. The matching of
model and real system is understood as the matching
of the corresponding output signalsψi(t) (i =1,2,3)
from model integrated numerically and from the real
pendulum, assuming the same inputs to both model and
real system. The sum of squares of deviations between
corresponding samples of signals from model and ex-
periment, for few different solutions, serves as a crite-
rion function. Together with the model parameters also
initial conditions of the numerical simulation are esti-
mated. A minimum is searched applying the simplex
method. In order to avoid the local minima, the sim-
plex method is stopped from time to time and a random
searching is then applied. After random searching the
simplex method is restarted again.

If we divide final value of criterion-function by the
number of samples used in calculation of criterion-
function, we obtain average square of deviation be-
tween two signals (obtained from the model and the
experiment) - let us denote this parameter asFcr. Now
this parameter can be used for comparison of matching
of different sets of experimental data and correspond-
ing numerical solutions.
In the Table 1 the part of the results of the parame-

ter estimations performed in the work [Awrejcewicz et
al., 2008] is presented. Three different sets of parame-
ters are presented, correspondingly to three variants of
the model of resistance in the joints. The set A1 corre-
sponds to the model with dry friction only. The model
B1 contains also viscous damping. The next model
(C1) is a development of the previous one (B1): the
parameterε is added to the set of the identified para-
meters.
In all the identification processes, the same set of ex-

perimental solutions is used: five periodic solutions
with the forcing frequencies (f = ω/2π): f = 0.2,
0.35, 0.6, 0.85 and 1.1 Hz (for each the solution the 20
sec of motion was recorded, after ignoring the transient
motions) and one decaying solution, which starts from
the periodic attractor with forcing frequencyf = 0.5
Hz (after few seconds of the recorded motion, the
forcing was switched off and the total length of the
recorded motion was 24 sec). Note that in our work,
we do not measure actual value of the forcing, but only
the control signal is recorded (determining the sign of
the forcing), since we assume the constant forcing am-
plitudeq = 1.718 Nm (determined before the identifi-
cation experiments).

5 Simulation results
In the upper part of Fig. 3 the final model C1 and real

system matching for vanishing motion (started from the
periodic attractor with the forcing frequencyf = 0.5
Hz), obtained during the identification process, is pre-
sented. In this scale we see almost perfect matching of
the corresponding behaviors. The bottom part of Fig. 3
presents enlargement of the final phase of decaying of
the same motion, where in addition the simulation of
the model A1 is shown. Here we can observe in details
certain aspect of the difference between models A1 and
C1.
Figure 4 show results of investigation of the forcing

frequency region 0.13-0.14 Hz. It is an example that the
developed model with their parameters can predict real
pendulum dynamics exhibited also for forcing frequen-
ciesf outside the region 0.2-1.1 Hz (containing all the
periodic solutions taken to the identification process).

6 Conclusion
Few versions of the model of resistance in the joints

have been tested in the identification process. Good
agreement between both numerical simulation results
and experimental measurements have been obtained



Figure 3. Final model (C1 and A1) and real system matching for

vanishing motion

Figure 4. Bifurcation diagrams exhibited by experiment and model

(C1) with the parameterf growing (→) and decreasing (←).

and presented, for all the variants of the friction model.
However, one of them, namely C1, seems to be optimal,
since it gives relatively good results with simultaneous
simplicity of the model itself, and high speed of the
simulation.
The model C1 is better for simulation (higher simula-

tion speed) than others because theε parameter is much
smaller and the characteristic of the friction torque are
is smooth. It is interesting that model C1 give better
results than models B1, while the only modification is
the parameterε treated as identified one (the result is
the smaller value of the parameterε). We are not able
to give a physical interpretation of that at this moment.
But since it is important to have a model giving results
close to experimental observations, we can accept even
some artificial improvements of the model having only
functional role, no physical sense, particularly if they
speed up the simulation process.
I should be noted, that examples of numerical and ex-

perimental simulations presented is section 5 are se-
lective. However, the presented examples show quite
good agreement between numerical and experimental
results. It leads to conclusion that the used mathemat-
ical model of triple pendulum with its parameters esti-
mated can be applied as a tool for quick searching for
various phenomena of nonlinear dynamics exhibited by
a real pendulum as well as for explanation of its rich
dynamics.
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