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Abstract: The method of multiple scales [1] is used to analyze a dynamics of
high-speed rotor symmetrically supported on the magneto-hydrodynamic bearing
(MHDB). The governing equations of the 2-dof system are reduced to
dimensionless. The right hand sides of the equations have been expanded in the
Taylor series in the equilibrium position neighbourhood. The linear and quadratic
terms have been kept. The nonresonant and resonant cases are considered.
Accordingly to the last case the system is in conditions of the primary and
internal resonances. Next, it is shown that hysteretic properties in the system can
be taken into consideration by means of Bouc-Wen model.

1. Introduction

The magnetic, magneto-hydrodynamic and also piezoelectric bearings are used in many
mechanical engineering applications in order to support a high-speed rotor, provide vibration control,
lower rotating friction losses and potentially avoid flutter instability. There are a lot of publications
devoted to the dynamics analysis and control of a rotor supported on various bearings systems. The
conditions for active close-/open-loop control of a rigid rotor supported on hydrodynamic bearings
and subjected to harmonic kinematical excitation are presented in [2, 3]. In [5, 6] a rotor—active
magnetic bearings systems with time-varying stiffness are considered. Using the method of multiple
scales a governing nonlinear equation of motion for the rotor-AMB system with 1-dof is transformed
to the averaged equation and then the bifurcation theory and the method of detection function are
used to analyze the bifurcations of multiple limit cycles of the averaged equation. In the present paper
the 2-dof motion of the rotor supported on AMHDB system is analysed in the nonresonant case and

under conditions of primary and internal resonances.
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2. Equations of motion

A uniform symmetric rigid rotor (Fig. 1) is
supported by magneto-hydrodynamic bearing
system. The 4-pole legs are symmetrically
placed in the stator. Fy is electromagnetic
control force produced by the k-th opposed pair

of electromagnet coils, Qg is the vertical rotor

load identified with its weight, (P, ,P, ) are the

Fig. 1. The cross-section diagram of the rotor radial and tangential components of the dynamic

symmetrically supported on the magneto-hydrodynamic . .
bearing oil-film action.

Equations of motion for the rotor are represented in the following form [2, 3, 4]
* Lk * k) . K * *
mx =P (p,p & )cos¢— P, (p,¢ )S|n¢+ >'F, cos, +Q, (t)
k=1

* Lk * .k tk - * ok K * . * *
my =P (p,p ) )sm¢+ P (p,¢ )cos¢+ZFk sing, +Q, +Q, ()
k=1

Pr*(/)vp*f):_ZC*{pz(w*_2¢*)+ P + 2 arctg 1+p}, P*(Pyé’}*)=ﬂC*l—)pw*_2¢* )
Jolo) N1-p

plelale) ~ plo) ‘ a(pWelp)
Here Q, (t), Qy* (t) are external excitation (we are supposing that Q, (t)=o0, Qy* (t)=Q"sinQ"t"),

«  6uR.L

C :%, p(p):l—pz, q(p):2+p2. The parameters us, &, R., L. denote oil viscosity,

S

relative bearing clearance, journal radius, total bearing length respectively, (o, ¢) are polar
coordinates.

To represent the equations of motion in dimensionless form the following changes of variables

and parameters are introduced

"k 3 * 3 Lk * * *

e . X . X ¢ . y . y
t=awt ;¢=¢*;p=p—*;Xz—*;X= —; X= *2*;y=y—*;Y= Y =%;
9 @ c w C w “C c w C
o o " . e . b
c-—S0-20-—-2__ig--2 _r-—" _p- P __p_F__
mawocC (9] maw “C maw “C maw “C maw “C maw “C

Where ' is rotation speed; ¢" is bearing clearance.
Thus the dimensionless equations of motion take the form

K= Pr(p,,b,¢'$)cos¢— P,(p,ﬁ)SiWJr Fux

§= P,(p,p,gi)sin¢+ P,(p,¢)cos¢+ Fy +Q +QsinQt M
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Pr(P:/’@):—ZC{ ((1 2¢) x/p arcth}, P,(p,giﬁ)z;zC P(l—2¢l

pllp) Ao ()
Here X:pCOS¢, y:pSin¢5 ézyx_zxya p:wa pP= X2+y23 COS¢:;5
p x> +y?
sing S , the magnetic control forces are expressed as follows F, =-%- /1( )

X2 +y

. Cm
Py =320~ 0)s ()= 2y )2

3. The nonresonant case

The right hand sides of the equations (1) have been expanded in the Taylor’s series as well as the
origin have been shifted to the location of the static equilibrium for the convenience of the
investigation. The linear and quadratic terms have been kept. So, the reformed equations of motion

are following

K+ ax— fy = 2% + o, X* + o,y + o XX+ Xy

o . 2
+asXy + agky + Yy
Y+ ay + =205+ BXC + Bry* + BxX+ Byxy 2)
+ BoXY + BeXy + B yy + F cos(Qt +7)
We seek a first-order solution for small but finite amplitudes in the form
x=ex Ty T,)+ €2%,(Ty T, ) + G)

y=a(ToT)+ &7y, (T.T)+
where ¢ is a small, dimensionless parameter related to the amplitudes and T, =¢"t (n=0, 1) are
independent variables. It follows that the derivatives with respect to t become expansions in terms of

the partial derivatives with respect to T, according to

d_oar,, odn ool
dt oT, &t aT, ot aT, ot

+..=D,+&D, + D, +

2
= (Dy+ D, + 27D, +...f = D2 +2:D,D, + £2(D? +2D,D, )+ .., where D, :a%'
k

To analyze the nonresonant case the forcing term is ordered so that it appears at order & . Thus
we recall in (2) F= &f, g, = eu, . Substituting (3) into (2) and equating coefficients of like powers of
€ we obtain

D2X, + ax, — =0
Order ¢ 0m 1= D% )

D2y, +ay, + DX, = f cos(QT, +7)
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Dgxz +axX, = fDyY, = _ZDO(DIXI +H1X1)+ﬂD1Y1 + alxlz +0‘2Y12
+ a3 DX + ay XY, + asX Doy, + a6y DoX + a7y, DgY,

Order & 5 5 5 5)
Dyy, + @y, + DX, = _2D0(D1Y1 + ﬂz)ﬁ)‘ﬁDlxl + X+ BoYi
+ X DoX; + BaX, Yy + Bs¥ Do Yy + Bs¥iDoX + B Y1Do Yy
The solution of (4) is expressed in the form
X =A (Tl )exp(i Q’1T0)+ A (Tl )exp(i a’zTo)+ o, exp[i (QTO + T)] +CC 6)

¥ = A A (T explionTy)+ A, A (T, Jexplio,T, )+ @, expli(QT, + )]+ CC
where CC denotes the complex conjugate of the preceding terms, @’ are roots of the equation
o —a i pOf 1 f (a - Qz)

a)ﬁ—(2a+,6’2)co§+a2:0; An = o i (Dl:Z(a_Qz)z_ﬁzQZ ’ q)2:2(a_gz)l_ﬂzgz’

(n=1, 2).
Substituting (6) into (5) yields
DjX, + %, = ADyY, = [~ 2iey (A + i A )+ A A Jexplio T, )+
[~ 2i, (A + 14,A, )+ BALA JexpliaT, )+ ...+ CC
DY, + @y, + DX, = [ 2iaA (A + A ) - pAJexplioT, )+
[ 2i@,A, (A + A, ) - A Jexp(i,T, )+ ...+ CC
The terms, which doesn’t influence on solvability conditions, aren’t presented in the last equations
and replaced by dots. So, the solvability conditions are

Rln _iﬂwn J =0
21— VYo
R,y \a—w;

where
R = _2iwl(All + ﬂ1A1)+ BAMKN, Ry = _Ziwz(Aé + ﬂ1A2)+ BAK,
R = _2i‘01A1(A; + /UzAi)_ PN, Ry = _Ziszz(Aé + /UzAQ)_ﬂAé
Consequently, the solvability conditions become R, = ;2” . And the equations for A; and A, are
n
following

(/5/\1 ~2im, +m“’%—1+ﬂjx+[%—zi@ylj/\ -0
1 1

. 2iw, A 2iw, A i
(ﬂAz—ZIwz'F Iw2X2+ﬁJA§ J{ I[OZX 2 —2|a)2y1]A2:0

2 2

0

It follows from (3), (6), (7) that the solution in the complex form is

x = lexp(— ev,t)a, expliat)+exp(— ev,t)a, explimyt i @, expli(Qt + )]+ CCl+ 0(52 )
y = &[A, exp(—evit)a, explimt)+ A, exp(— ev,t)a, explim,t i+ @, expli(Qt + 7)]+ CCJ+ 0(52)
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Then the real solution is following

x = lexp(= e t)a, cos(mjt + ©, )+ exp(— &v,tJa, cos(w,t + @, I 2 Imd, sin(Qt + 7))+ O(g2 )

(®)
y = &[A, exp(-evit)a, sin(ot +©, )+ A, exp(— ev,tJa, sin(w,t + ©, |+ 20, cos(Qt + 7 )|+ O(gz)
2w, +
where v, = e+ 1)
1
4o, - f| IMA, +
" " ImA,
s_ numerical integration 5
1.0x10 - analytical solu%ion 1.5x1074 numerical integration
. - analytical solution
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Fig. 2. Comparison of the numerical integration (2) and the perturbation solutions (8)

4. The resonant case Q~w,, o, =20, .

To analyze the resonant case the forcing term is ordered so that it appears at order &” . Thus we

recall in (2) F= &, 1, = &u, . It is supposed that @m>ay. Also in the resonant case we introduce the
detuning parameters o, 6,. Let put Q=w, +&0,, @, =20, —&o0, that corresponds to presence of
primary and internal resonance in the system.

Substituting (3) into (2) and equating coefficients of like powers of € we obtain

D2X, + ax, — =0
Order ¢ 0%+ % = DYy )

Dg Y, +ay, + BDyX, =0

2 2 2
Dy X, +ax, — fDyY, :_ZDO(DIX] +ﬂ1X1)+ﬂD1YI +To Xy Ty
+a3X DX, +ay Xy, +asx Doy, + gy DoX, +a;Y, Doy,

Order ¢’ , , , (10)
Do Y, +ay, + fDgX, = _ZDO(Dlyl +ﬂzy1)_ﬂD1X1 +BiXi +BaYi
+ 83X DXy + ByXi ¥y + Bsxi Do Yy + BeViDoX, + B7¥1Do Yy + f COS(QTO + T)
The solution of (9) is expressed in the form
X = Al(Tl)eXp(ia’lTo)+ Az(Tl)EXp(i w2T0)+ cc an

Vi =M A (Tl )eXp(i aTy ) +AA (Tl )exp(i ®,T, ) +CC
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o
Substituting (11) into (10) yields
DX, +aX, = ADoY, = [~ 2iey (A + 14 A )+ BA A JexplionT, )+
[ 2, (A} + 14, A, )+ BAL A Jexplion, Ty )+
A [al +Na, +iwon + Aoy oA as +io Ao +ioNa, ]exp(ZiwlTo)

—.
l.

where A =

+ Azz[oz1 + NS, Fimyo, + Aya, +io,Ayos + i, A ag +io,Aa, ]exp(2ia)2T0)
+AA 20, +2A, A, +(io +iw, s + (A + A, Jay + (oA, —ioA, as (12)
+(ia)2/\1 +im A, )a6 +(ia)1 +im, )A,A2a7 ]exp(i(a)1 + o, )TO)
+AA, [20:1 +2A, Ay, + (i, —i@) oty +(A2 +A, )a4 +(ico2A2 —ioA, )a5
+(ia)2K1 —ia)lAz)aé +(ia)2 —iw A A, ]exp(i(a)2 -, )To)
+ A1K1(O‘1 +A1(X1a2 +a,+ ia)l(oz5 —aG)))+ Azﬂz(a1 +A2(X2a2 +a,+ ia)z(oz5 —as)))+CC
D3y, +ay, + Dy, = [_ 2im A, (A +ﬂzA1)_ﬂA1’]eXp(iw1To)+
[_ 2imy A, (A + 1, A, ) A, ]EXp(i o,y )+
A12 [ﬁl +A21ﬂ2 +iw By + N\ By Hio A fs +io A fg + iw1A21ﬂ7]eXp(2iw1To)
+ A22 [ﬂl +A22/32 iy By + Ay By +io, Ay fs +iay A, By +i‘02A22ﬂ7 ]eXp(Zia’zTo)

+ AIAZ[zﬂl +2AM M,/ +(ia)1 +ia)2) 3 +(A1 +Az)ﬂ4 +(i0)2A2 _iwlAl) s

+(iwz/\l +i5011\2) 6 +(i‘0| +iw, )A1A2ﬁ7 ]exp(i(a), T, )To) (13)
+ K1A2[2/81 +2K1A2ﬂ2 +(ia)2 —io )ﬂs +(A2 +K1 )ﬂ4 +(ia)2A2 _iCUIKl )ﬂs

+(i0)2K1 _ia’lAz)ﬂs +(ia)2 —la, )K1A2ﬂ7 ]EXp(i(wz - )To)

+ Alﬂl(ﬂl +A1(K1ﬂ2 +P+ iwl( s _ﬁe)))+ AZKZ(IBI "’Az(xzﬂz +P+ iwz(ﬁs —,56)))

+% f exp(i(w,T, +o,T, +7))+CC

Consequently, the solvability conditions are

1 1 — .
qwl + rl p(ul + [qwz -, + A_l pwz -, JA1 AZ exp(— IO—ZTI ) =0

(14)
Qo =Py * (qul +— Doy, ]Af explio,T, )+ = f exp(i(eT,)+ 7)=0
2 A, 2

Here the coefficients Q.1 , Qw2 > Qe-wl » Q2w are the expressions in the bracket at the exponents with
the corresponding powers (12) and P, Pez > Pez-ol » P2o1 are the expressions in the bracket at the

exponents with the corresponding powers (13).
. . 1 . o .
Let introduce the polar notation A, = Ea’“ exp(l@m ), m=1,2. Substituting this polar

expressions into (14) and separating the result into real and imaginary parts, we obtain for the steady-

state response a, =y, =0
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¢ : v
(14 + 1, Ja, ———a,a, siny, ———a,a,cos 7, =0
4, 4a,

(e + 11, ) +ia12 siny, —Lalzcos;/z —LS"W] =0
4o, 4o, 20,

| .
- 4—1(01 —oy)a, + iala2 cosy, ——2—aa, siny, =0
o) 4a, 4,

1 g 2 2 f
—-——o0a, +——a; C0Sy, ———a; Siny, +——Ccosy, =0
20, 19 40, | 72 40, i SNy, 20, N
Here y, =0T, +7-0,, y,=20,-0,+0,T,.
Finally we obtain expressions for a; and a, . Thus unknown functions in (11) have been
defined.

1 12
a - 16&)12(,ul+y2)2+|12(0'1—0'2)2}2. a - —bi!b2—4ac!2
2 = ;

+y? b 2a

were a=¢7 +77°, b:8a)2(/11 +ﬂ2)(§5in72 —77C0572)_4|20'1(§C0572 +775in72);
c:a§(16a)22(y1 + 1) —4|22612)—8f2 .

5. Modeling of the rotor—-MHDB system with hysteresis

To take into account hysteretic properties of the rotor—MHDB system the Bouc-Wen model have
been successfully applied (Fig. 3). An appropriate choice of parameters and functions of the Bouc-
Wen model allow constructing of hysteretic loops of a various form in accordance with an

experimental data.

0.004 :
0.004 L
hysteretic loop hysteretic loop,
0.002
0.002
"~ 0.000
™ Pl ™ s :
3¢ 0:0007—L : > phase trajectory—
phase trajectory
-0.002 -0.002
-0.004 -0.004
-0.002 -0001 0000 0001 0002 0003 -0.002 -0.001 0.000 0.001 0.002 0.003
X y

Fig. 3. The phase trajectories and the hysteretic loops of the system (15).

The hysteretic model of the rotor—MHDB system is looked like following
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%=P.(p.p.0)cos4 - P.(p.4)sing + F,,
y=P (p o ¢5)sin¢+ P (p gzﬁ)cos¢+ Fuy +Qp +QsinQt

2 = [k ~(y+ psun(x)sgn(z, )[z,[" }X
1 :[kz ~(y+psgn(y) sgn(z, ) [z, ]y

(15)

6. Conclusions
In this paper the dynamics of the rotor—-MHDB system with 2-dof is analyzed only for two cases.
The first one is the nonresonant case. The second one corresponds to presence of the primary and

internal resonance in the system (Q = @, , @, = 2®, ). The method of multiple scales allows to study

the behaviour of the system under conditions of other categories of primary and secondary
resonances, to investigate a possibility of a saturation phenomenon.

It is supposed to find conditions for flutter instability (conditions for chaotic responses) of
hysteretic model of the rotor—MHDB system by means of the method based on the analysis of

wandering trajectories.
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