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Abstract: The work focuses on the numerical analysis of bifurcations of a stick-
slip solutions (termed sliding-standard solution as well) that result from a
complex dynamics of a piece-wise smooth dynamical system represented by
a block-on-belt model. The analysis of sliding solutions and conditions of their
appearance has been done with the use of Filippov theory. Since a �oating
discontinuity boundary is introduced as a function of velocity of the belt, the
investigated system can be divided into the two subsystems, which are sepa-
rately and continuously solved in that two appropriate regions. To get an exact
transition between solutions being de�ned in that regions, a kind of numerical
procedure with the exact crossing set detection (with inclusion of detection
of points lying precisely on crossing surface) has been introduced and imple-
mented as well.

1. Introduction

Theory of bifurcations is presently not a new but the well known and carefully inspected
branch of dynamics being still under deep considerations. Its the most particular prob-
lem is focused on a qualitative change in the nature of behaviour whilst a parameter value
passes through any critical points. Fundamental scheme or process during which the se-
lected analysed solution exposes double periodicity has been investigated in various ways.
For instance, the nonsmooth aspects of either numerical or purely mathematical approaches
can be matched by works [3,5]. Following the study of a buck converter exhibited by a non-
linear system, the period doubling (PD) bifurcation (diagnosed during periodically moving
switching borders) leads to a dramatic loss of stability of the nominal operation state. The
e�ect is there strongly undesirable so that, in addition, it re�ects in a PD route to chaos.
Making a little generalised simpli�cation, the troublesome scenario could be automatically
detected at initial stage just by an appearance of PD-bifurcation which is, at that time,
signi�cantly a�ecting the quality of circuits operation. The second cited work introduces a
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PD route that is observed in a kind of dc-dc power converter being operated in the regime
of the continuous conduction mode. The bifurcation's path of solutions is here processed by
means of harmonic balance analysis but an exact condition for the PDs occurrence has been
given in terms of solvability of a pair of algebraic equations.

The description of any miscellaneous bifurcations of states appearing in electronical
circuits is now successively extended on the example of another dc-dc power converter [2].
The work gives an interesting classi�cation of main forms of bifurcations possible to observe in
piecewise-smooth (PWS) dynamical systems giving, at the end, an illustrative experimental
application. The results cover with those numerically predicted and besides to the classical
PD bifurcations other periodic solutions undergo more complex C-bifurcations. According
to the systematization given, the attempt of consolidation of bifurcation theory for PWS
systems constitutes one of the recent trends in that challenging subject.

In order to demonstrate a bene�cial use or even any detrimental e�ects of bifurcation
phenomena many interesting techniques are used. One of them, known as a stroboscopic view
is widely and successfully used in investigations of stability of the switching electronic circuits
to obtain PWS maps of a desired dimension. There is a particular analysis of various border
collision (BC) bifurcations presented in [1], which is subject to the theoretical background
provided. Including some applications that have been adopted in a practical way, the theory
has became the proper tool for explanation of bifurcational schemes in PWS 2-dimensional
maps.

A quite di�erent type of switchings is also possible in any discontinuous mechanical
systems. They are there created on the principle of the successive sequences of slippings and
stickings of a physically speci�ed vibrating masses. Let the paper [4] be a certain example
of the non-smooth dynamics and the block-on-belt model with two degrees-of-freedom will
re�ect its mechanical realisation.

2. Theoretical background

Our analysis is based on a generic Filippov system of the form

ẋ =





f (1)(x), x ∈ S1,

f (2)(x), x ∈ S2,

(1)

where x ∈ Rn, and
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S1 = {x ∈ Rn : H(x) < 0},

S2 = {x ∈ Rn : H(x) > 0}.
(2)

H is a smooth scalar function with existing gradient Hx(x) = ∂H(x)
∂x

on the discontinuity
boundary

Σ = {x ∈ Rn : H(x) = 0}, (3)

and f (i) : Rn → Rn, i = 1, 2, are smooth functions.
By concatenating sliding solutions on Σ and the standard solutions in Si, i = 1, 2, it is

possible to �nd the desired general solutions of Eq. (1). In particular, the sliding solutions
can be obtained with the brie�y described Filippov convex method (see Fig. 1).

Let

σ(x) = 〈Hx(x), f (1)(x)〉〈Hx(x), f (2)(x)〉, (4)

be the de�nition of switch control function in which 〈·, ·〉 denotes the standard scalar product
in Rn. The crossing set Σc ⊂ Σ is de�ned by

Σc = {x ∈ Σ : σ(x) > 0}. (5)

The sliding set Σs is the complement to Σc in Σ, what allows to formulate the second
condition on Σ:

Σs = {x ∈ Σ : σ(x) ≤ 0}. (6)

The orbit of Eq. (1), in general, crosses Σ at points x ∈ Σc, while it slides on it when points
x ∈ Σs.

The Filippov method is based on the convex combination g(x) of the two vectors f (i)

applied to each non-singular sliding point x ∈ Σs:

g(x) = λf (1)(x) + (1− λ)f (2)(x), (7)

where

λ =
〈Hx(x), f (2)(x)〉

〈Hx(x), f (2)(x)− f (1)(x)〉 . (8)
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Figure 1. Graphical representation of the convex method.

Non-singularity of the sliding points will be assured if the denominator of λ will not be equal
to zero.

The set of sliding points can be �nd through the solution of the smooth dynamical
system of di�erential equations given in a (n− 1)-dimensional domain of Σs:

ẋ = g(x), x ∈ Σs, (9)

If one of the vectors f (i) vanishes then the equilibrium of Eq. (7) is called boundary equi-
librium. Otherwise, the boundary of a sliding region is a concatenation of sliding points,
boundary equilibria and tangent points in which one of the vectors f (i) is tangent to Σ but
the second one is nonzero. Therefore, the following de�nition of tangent points holds:

〈Hx(xT ), f (i)〉 = 0. (10)

In the point of view of a transient trajectory the visibility properties of the tangent points
are very interesting. In particular, tangent points are visible if the orbit of ẋ = f (1)(x)

starting from them belongs to S1 for small |t| 6= 0. In other hand, the same points are
invisible if the mentioned orbit belongs to S2 (see Fig. 2).

The object of the work is a two degrees-of-freedom mechanical system consisting of a
mass m moving on a belt and connected to a spring with nonlinear characteristics k(x) =

−k1x+k2x
3 (see Fig. 3). The block-on-belt model consists of the mass m attached to inertial

space by the spring k. Mass m vibrates on a driving belt that is moving at the velocity
α. Between the mass and the belt dry friction occurs, of which friction force characteristics
depends on velocity of the belt α and on the control parameter β, that have a direct in�uence
on a shape of the static friction characteristics. Equations of motion of the considered
dynamical system are given in non-dimensional form. In the �rst assumption, vibrating
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Figure 2. Visible (a) and invisible (b) tangent points.

mass m and its connection with driving belt provide the �rst two equations of our system.
The next two used in next section, will describe small dynamic changes in parameters α

and β. The model depicted in Fig. 3 can be described by the set of two non-dimensional

Figure 3. A 2-DOF mechanical system.

equations:




ẋ1 = x2,

ẋ2 = x1 − x3
1 − T,

(11)

where T is a friction force (see Fig. 4) expressed by the following characteristics

T =
β sgn (x2 − α)

1 + |x2 − α| . (12)

Transforming Eq. (11) to the form given in Eq. (1) we get the following generic planar
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Figure 4. Friction force model.

Filippov system

ẋ = f(x) =




x2, −x3
1 + x1 +

β

α− x2 + 1

x2, −x3
1 + x1 +

β

α− x2 − 1


 , (13)

where x = [x1, x2]
T and f =

[
f (1), f (2)

]T .
The discontinuity boundary Σ separating the two regions S1 and S2 is in this case de�ned

in the following way

Σ = {x ∈ R2 : H(x) = x2 − α = 0}, (14)

with Hx(x) = [0, 1]T , and

S1 = {x ∈ R2 : H(x) = x2 − α < 0},

S2 = {x ∈ R2 : H(x) = x2 − α > 0}.
(15)

The switch control function σ(x) given in Eq. (4) have now the form

σ(x) = f
(1)
2 (x)f

(2)
2 (x), (16)

where f
(1)
2 and f

(2)
2 are the second components of f (1) and f (2) of Eq. (13).

3. Numerical simulation and results

Assume that xα = [x1, x2 = α]T and let the switch control function (16) on the boundary
will be as follows

σ(xα) = (x1(x
2
1 − 1)− β)(x1(x

2
1 − 1) + β)

= x2
1(x

2
1 − 1)2 − β2.

(17)
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Some particular cases of Eq. (17) can be distinguished if it will be possible to �nd

Dα0 =
dσ(xα0)

dx
= 0,

σ(xα0) = 0.

(18)

Therefore, if

Dα0 = 2x1(x
2
1 − 1)(3x2

1 − 1) = 0, (19)

then we obtain following set of roots

xα0i =

{
0,±1,±

√
3

3

}
, (20)

for i = 1 . . . 5. Substituting xα0 given in Eq. (20) for x1 indicated in Eq. (17) and then
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Figure 5. Tangent points (circles) on the crossing of function σ(xα, β) with xα horizontal

axis for β = β1 (dash-dot line) and β = β2,3 (solid line).

solving it with respect to β we get the set of boundary values βi = [0,± 2
√

3
9

] for i = 1 . . . 3.
It is worth noticing, that for β = β1 the sliding segment vanish and degenerates to the
three tangent points xα0i for i = 1 . . . 3 while for β = β2,3 it covers the maximum region of
the discontinuity boundary beginning at − 2

√
3

3
, �nishing at 2

√
3

3
, and including by the way

points xα0i for i = 4, 5. The explained above sliding segment bifurcation scenario has been
illustrated in Fig. 5.

The introduced in Eq. (16) control function σ(x) multiplies the two terms f
(1)
2 and

f
(2)
2 which can be used to �nd tangent points of f (1) in S1 and f (2) in S2, respectively (see
Eq. (10)). Having noticed that at characteristic values of βi the whole set of tangent points
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Figure 6. Bifurcation diagram of the tangent points characterised by solution to the

Eq. (10) for the control parameter β ∈
[
β1,

20
√

3
45

]
.

is xT = xα0 , the above derivations are used to determine a curve of tangent points (visible
in Fig. 6) when the control parameter β varies from β1 to 20

√
3

45
.

Let us now de�ne a set of sliding points which are in agreement with Eq. (9). Recalling
Eq. (7) we have

g(x) = λ


 x2

f
(1)
2 (x)


 + (1− λ)


 x2

f
(2)
2 (x)


 , (21)

The derived earlier σ2, Hx, f (1), and f (2) are used in order to determine the convex method
parameter λ (see Eq. (8))

λ = − (α− x2 + 1)(x12(α− x2 − 1)− β)

2β
, (22)

where x12 = x1(x
2
1 − 1).

By putting λ given in Eq. (22) to (21) we get the di�erential equation of sliding solutions
on Σs, which is smooth on 1-dimensional sliding intervals of Σs

ẋ = g(x) =


 x2

0


 . (23)

The velocity vector of motion ẋ on the estimated line is composed only of one non-vanishing
component x2, therefore the mass m goes transversely on the (x1, x2)-plane until the bound-
ary of sliding region is achieved.
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Figure 7. Trajectories in x2(x1) phase plane surrounding invisible tangent point − 2
√

3
3

for β = 2
√

3
9 , and starting from various [x10,i, x2 = α] initial conditions.

There are many trajectories presented in Fig. 7 of which plotting has been stopped when
they were attracted to the discontinuity boundary. It can be observed that starting far to
the left from the invisible tangent point, some of trajectories make big loops on the phase
plane. For the biggest loop, in particular, there are visible (to the right) points before and
after crossing, and additionally, the used numerical algorithm have properly calculated the
solution point on Σc-line. Continuing, when an other trajectory crosses Σs-plane (in this
case it is from − 2

√
3

3
to 2

√
3

3
) then it starts sliding until the visible tangent point is reached.

All of the visible trajectories approach the same limit cycle when the time goes to in�nity.
Bifurcation diagram presented in Fig. 8a is a quantitative continuation of the observa-

tions described earlier. It is shown on it that points in which mass m begins sliding when
starting from various positions at the same velocity of the belt (x2 = α). Concluding a little
change in starting position x10 provides rapid displacement of landing points placement at
which sliding phase begins. It is very interesting that very close to the extremely stable
loops which before landing on Σs-plane make a few loops surrounding it, exist some initial
conditions ((x1, x2) points) at which a transient trajectory is almost unstable (see Fig. 8b).
In this situation the convergence process takes very long time which corresponds to 85 loops
until the poor-stable trajectory lands on Σs-plane.

4. Conclusion

On the basis of the presented results, the introduced two degrees-of-freedom block-on-
belt dynamical system is an interesting object which is very useful in analysis of discontinuous
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Figure 8. (a) Bifurcation diagram of the landing points x1,s (as a function of initial
condition x1,0) at which sliding on the discontinuity boundary begins; (b) phase trajectory

starting from point (− 2
√

3
3
− 0.36, α) for β = 2

√
3

9
of which number of

Σc-plane crossings is 85.

bifurcations. Special attention has been paid on analysis of sliding segments bifurcations,
but there were also observed some interesting remarks associated with the investigations of
in�uence of initial conditions on the phase trajectory convergence to the sliding region at
discontinuity.
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