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Abstract: In this work an alternative (novel) continuous friction model is 
proposed and presented, which suitable for analysis of stick-slip vibrations 
caused by dry friction. It takes into account some elements of the known switch 
model. Advantages of the proposed model are illustrated and discussed using a 
one degree-of-freedom model with dry friction, which exhibits regular and 
chaotic dynamics. The system dynamics is monitored via standard characteristics 
like trajectories of motion in the system’s phase space, bifurcation diagrams as 
well as the Lyapunov exponents. The obtained results exhibit advantages of (the 
proposed model in comparison to the often used switch model.  

1. Introduction 

Although dry friction belongs to one of the most known phenomenon exhibited by mechanical 

systems, but its proper mathematical modeling does not belong to easy tasks. Friction force between 

sliding surfaces is a complex process and depends on several parameters, e.g. relative velocity of 

sliding surfaces, normal load, time, temperature. An extensive literature review on the dependence of 

friction on these parameters and dry friction models can be found in works of [Kragelsky and 

Shchedrov (1956) [6], Martins, Oden and Simoes (1990) [10], Ibrahim (1994) [5], Awrejcewicz and 

Lamarque (2003) [2], Awrejcewicz and Olejnik (2005) [3], Andersson, Soderberg and Bjorklund 

(2007) [1]]. The cited references mainly address dry friction stick-slip oscillations with different 

models of friction. 

The aim of this paper is to propose an alternative continuous friction model suitable for analysis 

of stick-slip vibrations caused by dry friction. Continuous friction model is introduced and presented 

in Section 2. As an example of mechanical system a one degree-of-freedom (1-dof) model is 

considered in Section 3, which exhibits regular and chaotic dynamics. Numerical calculations and 

results of our study can be found in Section 4, where advantages of the proposed model are illustrated 

and discussed, and where also phase portraits, bifurcations diagram as well as the Lyapunov 

exponents are reported. Conclusions of our study are presented in the last Section 5.  
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2. Continuous Friction Model 

Several dry friction formulations have been proposed based on the classical Coulomb model. Owing 

to the Amonton’s assumptions the friction force Ffr is defined as a function of the relative velocity vrel 

of sliding surfaces in the slip phase and as a function of the externally applied force Fex in the stick 

phase. This model is known as the “signum model with static friction point” and describe dry friction 

phenomenon in the correct and accurate way. Note that during numerical simulation an exact value of 

zero is rarely computed. For this reason the “signum model” is equivalent, from a numerical point of 

view,  to the classical Coulomb model. 

 The dependence of friction force on the relative velocity based on the “signum model” is not 

continuous function for argument equal to zero and standard numerical procedures devoted for 

solving differential equations cannot be used. The friction curve is therefore often approximated by a 

continuous or smooth function. Usually, friction curve approximated by these functions are 

continuous or even smooth, but for vrel = 0 the value of friction force is always equal to zero. In 

another words, the friction force depends on vrel but not depends on Fex in the stick phase. 

 In two of the recent papers (Leine et. al. (1998) [8, 9]) devoted to mathematical modeling of dry 

friction, the so called “switch model” is proposed and used in order to match the obtained 

numerically simulation results with those given by the experimental investigation of the mechanical 

bodies exhibiting stick–slip vibrations. Switch model (from a mathematical point of view) is 

governed by three systems of nonlinear ordinary differential equations: one for the slip phase, a 

second for the stick phase and a third for the transition from stick to slip. In paper [8] it has been 

shown (for one system of parameters) that from a computational point of view the smoothing 

methods are more expensive than the switch model based methods. 

 Now we introduce an alternative continuous friction model which takes into account some 

elements of the mentioned switch model. We propose continuous friction model using friction force 

on the base the switch model. The space Fex-vrel is divided into four regions as follows 

 ε>rel1 v:V , 

)]FF()0v[()]FF()v0[(:V sexrelsexrel2 −<∧≤≤ε−∨>∧ε≤≤ , 

)]FF()0v[()]FF()v0[(:V sexrelsexrel3 >∧<≤ε−∨−<∧ε≤< , 

)FF()v(:V sexrel4 ≤∧ε≤ . 

The continuous friction force is defined by the following way 

114



 
( )
( )

( ) ( )
( )( )⎪

⎪
⎩

⎪
⎪
⎨

⎧

++−
−

=

4exrelsex

3rels

2exrelXs

1relk

fr

VforFvsgnFFA
VforvsgnF1A2
VforF,vSgnF
VforvsgnF

F
, (1) 

and 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ε
−

ε
= rel

2

2
rel v

23
v

A  (2) 

is the approximating function. The function 

( ) ( )
( )⎩

⎨
⎧

=
≠

=
0vforFsgn
0vforvsgn

F,vSgn
relex

relrel
exrelX

 (3) 

guarantees continuity of friction force in the region of V2 for a relative velocity equal to zero. 

 Figure 1 shows the dependences of friction force on the relative velocity vrel in the region of 

near-zero relative velocity for a few fixed externally applied forces Fex. 

 
Fig. 1. Friction force of the continuous friction model for fixed externally applied forces as a 

function of a relative velocity. 

 

In our model friction force is a continuous function on vrel (like in smoothing methods) and for vrel = 

0 friction force is equal to externally applied force Fex (like in signum model). In another words, our 

continuous friction model can be treated as an approximating friction force appeared in switch model 

using the continuous functions. 

3.  One Degree-of-Freedom Model 

To demonstrate the above presented continuous friction model as an example we consider a single-

degree-of-freedom (1-dof) model with dry friction. This model possesses a stick-slip periodic and 

non-periodic solutions. Our 1-dof system is shown in Figure 2. 
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Fig. 2. One degree-of-freedom model with dry friction. 

 

The disc (II) is characterized by linear stiffness k and the mass moment of inertia I. It is riding on a 

driving disc (I), that is moving at angular velocity ωdr. Between first disc (I) and second one (II) dry 

friction occurs and generates a moment of friction force Mfr. In addition, harmonic excitation with 

amplitude M0 and circular frequency Ω is added to our model. The relative angular velocity of the 

second disc with respect to the first disc is denoted by ωrel = ωdr - ϕ  and Mex = kφ - M0cosΩt. The 

moment of friction force Mfr = Ffr·r, where r is the average radius of friction and Ffr is given by 

equation (1) with friction force in the slip phase 

( )εωδ −+
=

rel

s
k

FF
1

. (4) 

The following second-order differential equation of this system is 

tcosMMkI 0fr Ω+=ϕ+ϕ . (5) 

This dynamical system can be expressed as a set of first-order ordinary differential equations. The 

governing equations read 

( )
⎪
⎩

⎪
⎨

⎧

Ω=φ

φ++ϕ−=ω
ω=ϕ

IcosMMk 0fr
, (6) 

where the dot (·) denotes differentiation with respect to time. Below the initial parameters of our 

model are presented: I = 2 kg·m2, k = 10 N·m·rad-1, Fs = 20N, r = 0.1 m, δ = 3 s·rad-1, ωdr = 0.3 rad·s-1, 

Ω = 2 rad·s-1, M0 = 0.5 N·m. Numerical parameters are: time step h = 10-3 s and steepness parameter ε 

= 10-3 rad·s-1. 
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4. Numerical Calculations and Results 

In the signum model and switch model friction force is non-continuous function of relative velocity 

and therefore the methods commonly used to compute the Lyapunov exponents cannot be applied. 

Continuous friction model as proposed in this paper, does not possess this disadvantage and can be 

used during analysis of the systems, where the Lyapunov exponents are computed by standard 

procedures [4, 7]. Note, that while computing Lyapunov exponents, the equations (6) and three 

additional systems of equations with respect to perturbations are solved. 

 In order to simulate the stick-slip vibrations using the proposed continuous friction model 
equations (6) are solved. The state equations for the switch model read 
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In order to solve the derived ordinary differential equations the standard numerical algorithms often 

used for study dynamics of lumped mechanical systems can be directly applied. In our study 

differential equations are solved via the fourth order Runge-Kutta method (RK4) with constant time 

step h and the Gramm-Schmidt ortonormalization method. The dynamics of the system is monitored 

via standard characteristics like time histories in the system’s phase space, bifurcation diagrams as 

well as the Lyapunov exponents. 

 Let us consider first dynamics of the system for M0 = 0, i.e. without harmonic excitation. For this 

case, the phase portraits obtained with both switch model and continuous friction model are shown in 

Figure 3. The periodic stick-slip oscillations have the sliding velocity almost the same (both for 

switch model and continuous friction model). It is visible too, that in the sticking phase some 

differences are observed. The differences occur in result of another approximating friction force 

application in near-zero relative velocity neighborhood. In comparison with the switch model we 

obtain better results for this case using our friction model. It allows to obtain the same accuracy as in 

the switch model, but for larger time step h and steepness parameter ε. Consequently, the switch 
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model is more expensive than continuous friction model for this case, from the computational point 

of view. 

 
Fig. 3. Phase portraits of the analyzed system without harmonic excitation. 

 

 The studied mechanical system (with harmonic excitation) possess both periodic and non-

periodic solutions. Figures 4a and 4b presents different behaviors of analyzed mechanical system in 

time interval t∈<200, 500> s.  

a)        b) 

 
Fig. 4. Phase portraits of the analyzed system with harmonic excitation for various angular velocities 

ωdr: a) ωdr = 0.11 rad·s-1, b) ωdr = 0.3 rad·s-1. 

 

 Below the periodic and non-periodic solutions are detected using bifurcation diagram and the 

Lyapunov exponents identifications tools. The bifurcation diagram of the system is shown in Figure 5 

with the velocity ωdr as control parameter and the angle φ on the vertical axis. In the same plots 

dependences of the largest Lyapunov exponent λ1 vs. the control parameters are reported. A study of 

this bifurcation diagram implies that chaos occurs when the exponent λ1 is positive. One of the 

computed Lyapunov exponents is always negative and second is always equal to zero (not shown in 

Figure 5), since the studied system of equations is autonomous. 
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Fig. 5. Bifurcation diagram and the largest Lyapunov exponent of the analyzed 1-dof model with 

ωdr as control parameter and φ on the vertical axis. 

 

5. Conclusions 

The continuous friction model suitable for simulation of the stick-slip vibrations has been proposed 

and validated using the one degree-of-freedom mechanical system with dry friction. It has been 

observed that continuous friction model yields engineering accepted results and possesses some 

advantages in comparison to the switch model. Interesting dynamics of the analyzed system are 

reported and analyzed, including stick-slip periodic and chaotic behaviors. During analysis the 

standard techniques, i.e. monitoring of phase portraits, bifurcation diagrams and the Lyapunov 

exponents have been applied. 

One of the important advantages of our novel model is associated with direct application of the 

standard numerical procedures devoted to either solving differential equations or to computation of 

the Lyapunov exponents. The obtained results have been compared with those given by switch model 

application, and they indicate better numerical accuracy of our proposed continuous model. 

Continuous friction model is validated and it gives correct results, even if the numerical steepness 

parameter ε is extremely large. It allows obtaining the same accuracy as in the switch model for 

larger time step h and steepness parameter ε. The proposed continuous friction model may also be 
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suitable for simulation of the stick-slip vibrations and it may be applied to model friction force in any 

other mechanical systems. 
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