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1 INTRODUCTION

Although deterministic temporal-spatial chaos has been already observed in fluid dynamics
(turbulence), but it has been recently also exhibited by structural mechanical objects like beams,
plates and shells. The problem regarding existence and uniqueness of solutions of the partial
differential equations governed dynamics of the Timoshenko type shells has been rigorously studied
in references [1, 2]. On the other hand it is observed that although investigations devoted to chaotic
dynamics of plates, and conical and spherical shells are being already often investigated, but chaotic
vibrations of geometrically nonlinear Euler-Bernoulli beams are rather rarely studied [3]. We are
aimed to fill, at least partially, the existing gap of investigation of dynamics of this class of problems
of nonlinear continual systems.

2 PROBLEM STATEMENT

Mathematical model of the studied beams is constructed owing to the Euler-Bernoulli hypothesis
taking into account both nonlinear coupling between stresses and displacements and nonlinear
dissipation properties.

We study the one-layered beam as a 2D object of the space R® applying the rectangular co-
ordinates introduced in the following way (Figure 1): In the beam body the so called mean line z = 0
is fixed, axis OX is oriented from left to right along the mean line, and the axis OZ (being
perpendicular to OX) goes down. Therefore, in the taken system of co-ordinates our studied beam is
defined as follows: :

Q={x,z/(x)e[0;a], (z)e[-h/2; h/2]}, 0<t< oo
The governing beam (having a squared cross-section) dynamics equations are cast in the form [4]
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Figure 1. Beam geometry
In system (1) the following non-linear operators are introduced
*udw  du d’w 39%w( awY 32w ow
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Note that equations (1) exhibit two various nonlinearities: (i) nonlinear stress-strain dependence is
taken into account [5], and (ii) nonlinear dependence of friction vs. velocity within the Coulomb
model (m = 0) is applied (m = 1 corresponds to linear damping).

Equations (1) require boundary and initial conditions. In this brief report only rigid clamping is
further studied and the following boundary conditions are applied !

w(0,8) =u(0,£) = w..(0,8) = w(a,t) =u(a,t) = w,(a,t) = 0. @)

Initial conditions follow

w(x,0) = u(x,0) = u’(x,0) = w'(x,0) = 0.
Problem (1)~(2) is reduced to the non-dimensional form via the following transformations

m—1 2
t=t/t; §=8——h > r=2 a_Z; W=£; 17=u12; 3c'=—)f-;
T h\ Eg h h a
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where x, f are spatial and time co-ordinates, respectively; € is the damping coefficient; E, y are
Young modulus and volume specific weight, respectively; g, p, are transversal and longitudinal loads,
respectively; w, u are deflection and displacement mean line functions, respectively; 4, a are beam
height and length, respectively; K;, K, are first and second foundation coefficients, and m is nonlinear
dissipation parameter [5]. For K, =0 equation governing beam dynamics on the Winkler foundation

is obtained.

3 ANALYSIS

The studied continuous system is reduced to a lumped system via the finite difference method
regarding the spatial co-ordinate with approximation O(A?). Differential operators regarding x are
substituted by finite-difference approximation, and the following system of ordinary differential
equations with respect to time (ODEs)is obtained:

2
4ﬂiwi+K1wi—E%lei=q+/l’?i Wil — W, +2 Wisi =W, /%x;Vi +
12A A A A 2 A A
U —u; AW, m—1
e e e LB a1 LA A 4
A A2 [ i l ll ll ( )
Au, w ~w, Aw, "
bz[ A2 + 1-QIA A2 ]=_px+ui’

where: A=1/n, 0<i<n, n is the number of beam axis partition; 252‘, A, are second and first order
difference operators. Note that for brevity of considerations bars in non-dimensional equations (4) are
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omitted.
Boundary conditions regarding the finite-difference form read:
WO:uOZWn'—_un:O’ WEIS Warp W,

=w,. &)

n-1
Initial conditions (¢ = 0) for the transversal load is

w,=u, =u',=w,=0. (6)
The applied load has harmonic form g =g, sin(@,?) , where @, is excitation frequency, and ¢, is

the excitation amplitude. Equations (4)-(5) are reduced to a normal form and solved by fourth order
Runge-Kutta method.

Our investigations have shown that the qualitative picture of all beam points is the same, therefore
further study is carried out only for beam center (x = 0.5) and quarter-beam centers (x = 0.25). Time
histories w(0.5;¢), w'(0.5;¢), u(0.25;¢t), u’(0.25;t), phase portraits w(w') and u(u'), power
frequency spectra (FFT) S, (@,)and S,(@,), as well as Poincaré maps and Lyapunov exponents are

further studied to monitor the system dynamics.

4 NUMERICAL RESULTS

Numerical results concern steel made beams (£ =2-10° MPa) with the ratio 5= alh=50. The non-
dimensional damping coefficient £ =1. Numerical simulation for symmetric boundary conditions (5)
allowed for construction of the vibration character charts vs. control parameters {g,,@, } for n=28
and »=40 (Figure 2). The reported charts contain 300X 300 points, i.e. the system of (2n — 4)
equations has been solved 9x10* times (program package has been built to solve this task).
Excitation frequency is changed from @,/2 to 3@,/2, where @, is linear frequency of the system

(for the rigid clamping @, =6,35). Maximal amplitude of excitation corresponds to the beam
deflection equal to 5h. Identification of beam vibration type required for a chart {q,,®,}
construction for each time series w(f) has been carried out using the frequency power spectrum
S, (®,) and the Lyapunov exponents. Analysis of the chart {g,,®, } indicates that for low values of
excitation amplitude, the studied beam exhibits regular periodic vibrations. Increase of ¢, (for low
values of the excitation frequency @, ) yields bifurcation zones occurrence with negligible chaotic

zones. Increasing of @, causes increase of bifurcation zones, and in the regular zone also small parts

of both quasi-periodic and chaotic vibrations appear. It is clear that depending on the partition number
n the mutual relation between the mentioned zones undergoes changes: Chaotic zones are shrunk,
whereas zones of bifurcations are enlarged and start to merge. Since the qualitative behavior of the
system is similar for » = 28 and » = 40, partition number » = 28 is further used during our
investigations.

n=28
1}

A7 4 o 655 740 848 Ol

550 635 7.40

I(’)erio.dic v'ibdr?tio%s ! I Quasi-periodic vibrations and period doubling bifurcation
[ Quasi-periodic vibrations - gyl :
[ |Chaotic vibrations Il Period doubling bifurcation

Figure 2. Charts of vibrations vs. control parameters
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For n = 28 dependencies W, (q,) have been constructed with the attached vibration character
scales regarding frequencies denoted by lines I-I, II-II and III-I1I (Figure 3). The applied scale meaning
is given in Figure 2.

Note that any arbitrary change of vibration character, frequency power spectra or phase space
yields a qualitative change of the global system dynamics.
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Figure 3. Dependence W, (g,) (up) and vibration character scale (down)

5 CONCLUDING REMARKS

The method of investigation of chaotic vibrations of geometrically nonlinear beams is proposed and
illustrated on frame of qualitative theory of differential equations and nonlinear dynamics. Chaotic,
regular and bifurcation dynamics of the beam vs. control parameters (amplitude and excitation of
transversal harmonic load) is reported and discussed.
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