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Non-smooth Periodic Dynamics of a Bush in Tribological Conditions
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Abstract—In this work the model of a contact system with
heat and wear generated by friction and/or impacts is studied.
The methods and mathematical models of such systems applied
so far by others contribute only partially to the description of
complex dynamics. First, the analysis of contacting dynamic
models omits tribological processes on a contact body surface.
Second, the mentioned models do not include either the body
inertia or impact phenomena usually appearing within the body
clearance. We contribute to the problem by matching both
phenomena, which improves modeling of dynamic behavior of
contacting bodies. Analysis of both stick-slip and slip-slip
motion exhibited by the system is performed (impact-less
behavior of this model has already been studied by the authors
[1-3]), among the others. Analytically predicted vibro-impact
stick-slip and slip-slip dynamics has been also verified
numerically.
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l. Introduction

Attention is focused on modeling of non-linear
dynamics of two bodies consisting of a stiff bush with
clearance 2A, (see Figure 1). The bush is coupled with
housing by springs with stiffness k, and is mounted on
the rotating thermo-elastic shaft 1.

Fig. 1. Analyzed system

The following assumptions are taken: (i) the shaft rotates
with such enough small angular velocity €2 that
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centrifugal forces can be omitted; (ii) non-linear kinetic
friction occurs between the bush and the shaft; (iii) heat is
generated on the contacting surface R =R; due to friction;
(iv) heat transfer between contacting bodies is governed
by Newton’s law.

I1. Equations for shaft rotational movement of an
absolutely rigid bush

Let axis Z be a cylinder axis. The equilibrium state of
the moments of forces with respect to the shaft axis gives

B,, (t) + kyR3p, (1) = (V, 2nRZP(1)

lpa (D] < Ay, (1) = Q ; (1)
0,(H)=0, |(P2(t)| <A,, P,(1)=Q; 2)
05 ==k, 0o =A,, G2, >0, 3)

where: V, = RQ—-R,p, (1) relative velocity of the contact

bodies, k is the coefficient of restitution, ¢, (3 ) is the
bush velocity just before (after) impact, B, is the moment
of inertia of the bush per length unit, f(V,) is the kinetic
friction coefficient depending on relative velocity, P(t) is

the contact pressure. The initial value problem is defined
in the following way:

0,(0) =03, ¢,(0) = ;. “
Relation approximating curve f(V,) has the following
form

f (V) =sgn(V,)F(V,),

v = Fo—kV,, 0<V,<V
R = Vs Vo <V,

where: F;, k, V,;, are constant coefficients.

min (5)

min> Y min

I11. Thermo-elastic shaft

Inertial terms occurring in the equation of motion are
omitted in our study and the problem may be considered
as a quasi-static one. In the case of axially symmetric
shaft stresses, the governing equations can be derived
using theory of thermal stresses for an isotropic body (see
Nowacki [4]). Applying cylindrical coordinates one gets
the following set of equations

2
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62T1(R,t) +l T (R,t) _ 1 dTy(R,Y)
oR? R 0R a, ot
with the attached mechanical
u,t)=0, UR,t)=-Uh, ©)+U" (1), (7)
and thermal boundary conditions

, 0<R<R,(6)

OTi(R;,t
IO L TR =D VPO ®)
LG ©)
R—0
and with the following initial conditions
T,(R0)=0, 0<R<R,. (10)

Velocity of the bush wear is proportional to a certain
power of friction force. According to Archard's
assumption [5] we have

U*® = K"V, (OP®) (1D
where K" is the coefficient usually identified
experimentally.

Shaft radial stresses ogx(R,t) may be found knowing
radial displacement U(R,t) and temperature T,(R,t)
from the following formula
E, {1—“ URYD , v URDY

or(R,t)=
R(RD 1-2v,|1+v, @R  1+v, R

- Ti(R,Y)

The following notation has been applied: P(t)=
—og(R;,t) - contact pressure; U(R,t) - displacement
component along radial direction in the shaft: E; - Young
modulus; v, - Poisson's ratio; a, - thermal diffusivity, o, -
thermal expansion coefficient; A; - thermal conductivity;
K" - wear constant coefficient; 1 [0, 1] - denotes the

part of heat energy which goes on the wear.
Upon integration of the first equation of (6) and taking
into account (7) the contact pressure is

2Eq,

Pt)=
® 1-2v,

Ry
5 Iz -
1 0

E
A-2v)(1+Vv)R

hm-ure] (2

V. Solution Algorithm

Let us introduce the following dimensionless parameters:

R P T
T:l’r:_: (P(T):&: p:_ae:_la
t, R, A, P T,
w
uW:U_7a0:h:(Dl:%: ! :Bi:aTRla
U, Fo A(p YA/ %o A

Mo :(1—010)/0‘0 > €= U4/ =H0/¢°1:
Mo = Vo _Vmin)/VO , hh(@=hyt,r), (V)= "1,

2nRIPFA, 5 kR
b e PR T b

w_ KYALE , _(-mE R} oA,
(1=2v)(A+v))’ : MA=2vpty
~ t ; ot
ot Wt x= 02y Ok (13)
where:
B,A, v — RA, B U,
fo2nRP, Tt T o (I+v)R,
E\U :
= =0 , tr :R—I,VO:QRI. (14
A-2v)Ad+vR, a

The dimensionless equations governing dynamics of the
analyzed system have the form

H(1) + 0g0(7) = sgn(®, — ®)F(P)p(1),

lo() <1, p(v) = o, ; (15)
(D=0, |o(v|<1, ¢(v) =0 ; (16)
o' =—ko, lo|=1, ¢ >0 ; (17)
e(0)=x, p(0)=y, (18)
where:
1+ewmy, P0<omg, ®(2-1p) <@
Y (¢) =11+, oMy <¢ <o (19)

1+2e®, — €@, ® <P<®,(2-mp)
In order to solve the motion equations (15) one needs to
know contact pressure p(t) and wear u"(1):

1
p(1) =hy ()-u"(m)+[0EDEE,  (20)
0

u"(t)=k" j | = @(0)| p(r)dt - 1)
0

The one-dimensional transient heat conduction equation
under consideration takes the following dimensionless
form

a%0(r, 1) +l o0(r,t) 1 00(r,T)
or? r or o ot
whereas the thermal boundary conditions are

[M + Bie(r,r)}
or

>r a0(r,7)
or
and initial conditions are as follows

(22)

=10 P(e())|o; - o()|pr),

r=1

=0 23)

r—0

0(r,0)=0. (24)
Applying an inverse Laplace transformation ([2], [6]),
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the nonlinear problem governed by Egs. (22), (23) and
(24) is reduced to the following integral equation of the
second kind of Volterra type

p(v) = hy (1) -u"(x)+
21,07 [ G, (r—&)P(9(8))|o; —H(E)|p(E)E (25)
0

Then the problem is reduced to consideration of equations
(15) and (25), which yield both dimensionless pressure
p(t) and velocity ¢(t). The temperature is defined by

the following formula
0(r, 1) =7,3 "' [ Gy (r, 1= &)W(H(E))|o, - HE)|P(E)E,
0

where

: 2 2Bi,2p; s

{Gp (‘E), Ge(l, ’C)}Z {0 5’ 1} _ Z 2{ ->2 umi e—ll%mr
Bi m=t B (BI7 + 1)

and p,, are the roots of the characteristic equation

BiJy () —pd; (W) =0.

>

IV. Analysis

First the case of bush vibrations without tribological
processes is studied (y; =0, k" =0). For this case we
have p(t)=hy (t). Our system governed by equations

(15) may exhibit four different periodic motions. Namely:
(1) periodic orbit with one impact, where a stick does not
appear; (ii) periodic orbit with one impact, where a stick-
slip occurs; (iii) periodic orbit with two impacts, where a
slip of the contacting bodies occurs; (iv) periodic orbit
with two impacts, where a stick-slip appears.

two impact one impact
o1 slip slip
P I —
two impact
stick-slip
one impact |
stick-slip |
1 4 |
|
|
|
|
|
0 T T } T T
3 -2 -1 0 I x

Fig. 2. Zones of different periodic impact motions

In what follows we assume that €<<I1, (0(2) <<1,

0)3 =0¢, and n, < —1. It means that the system dynamics

is exhibited in the interval (0<V, <V, ), where a

decreasing slope of the kinetic friction coefficient is
observed.

Results of our consideration allow us to give formulas
for the coefficient of restitution k for a general case of
the following case

Kacmna, 0< o <2-(4/3)e, X <X <X,
Kavna,  0<o; <2-(4/3)s, Xy <x<1

Kecwnos» 2—(4/3)e <o <2, X <x<-1
Kacmnas 2—(4/3)e<m; <2, —1<x <X
Kavna, 2—-(4/3e<w; <2, X, <x<l1

k(X,®;) =< Kgcmnpss 2 < 0 <2+(4/3)e, X, <Xx< -1
Kacmna, 2 <0 <2+(4/3)e, —1<x <X,
kAMNA, 2<031<2+(4/3)3, Xy < X<1

Kgcmnoe, 2+ (4/3)e <@ <0, Xy < X< X,
Kemnpe, 2+(4/3)e <y <oo, Xy <X <1

Kavna,  2+(4/3)e <o <oo, —1<x<1

where
Kavna =1—(2/3)t,6+0(e7), 1, =42(-X) ,

3

3
Ty —T

32+13)
Kacmna = Tl/ml - (1/3)(T12/@1)8 -
(1/8)(t) o, )(4 = 17)3e + 0(%) ,

2,32 2 2 2
K T +—16r0 + 1,07 (Tp + ;) — 1507 (4 +15) N
BCMNDB = 5 2 5 €
o) 60, (T70] +213)

1370, (T) +4)
2 2 2
16(t5007 +271()

Ty :\/2+1/4+r§w12 .

The obtained results are graphically presented in Figure 2
where

X (@) =1-(1/2)0f +(1/3)o)t + (/)i (of —4)de + o(?)
X (0) = 1-0.507 —(1/3)ore + (1/8)of (of —4)de+0(e?),
X () = X, (o)) + (2/3)(0; — 4 ¢,

Observe that the function K(X,®;) possesses the
k(x,0)=1,
K(xy,0;)=1, 2< o, <o, k(l,m;)=1 at the boundaries,

whereas inside the considered interval it has the following
minima

Se+o0(g?),

following values 2<@ <o,

min k(x,®;) =K(Xg,0;)=1-(2/3oe,

Xe[x,1]
0<w, <2+ (43,
minl] k(x,o,)=k(-1,®,)=1-(4/3)¢,

Xe[xa,

2+(4/3)e<w, <o
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which can be presented in the form
~ {1 —(2/3)me, 0< o, <2+(4/3)e

1-(4/3)e, 2+(4/3)e <@ <o (26)

min

Notice that for an arbitrary k™ € (K,;,,l) there are two
values of X/, X5 (K(X{,m,)=k(x;,0;)=k"). Let us
introduce the following intervals

X; <X| <Xp,Xg <X <1 for O<w, <2,

Xy <X| < Xg,Xo < X5 <1 for 2<o; <2+ (4/3)e,

X, <X, <=1,—1<x5 <1 for 2—(4/3)e<®; <
It is not difficult to check that a periodic orbit associated
with X; (decreasing part of the coefficient k(X)) is stable,
whereas a periodic orbit associated with X, (increasing
part of the coefficient k(X)) is unstable.

" A k "
X X Xo X5 X
0.4} -D.2 0.2 0.4 0.6 0.8 i’
0.98
*
0.96 1 - k
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/aﬁ k(X= 0)1)
Fig. 3. Graphical solution of equation K(X,@,)=k"
¢
l —
o -
-1 4
-2
]

Fig. 4. Phase trajectory of the bush movement for different values of X

A numerical analysis has been carried out for the
following dimensionless parameters: €=0.1, o, =1.6,

6=2, (oé =0.2. Formula (26) givesk,;, =0.89. If
k*=0.93 (k" e(Kp,, 1)), then our system exhibits two
periodic orbits defined by X; =-0.33 (stable) case (ii)

and X5 =0.44 (unstable) case (i) (see Fig. 3 and 4).

Curves 1 and 2 approach a stable periodic orbit, whereas
curve 3 tends to the stable point (1,0). Note that the
dashed curve is associated with an unstable orbit (see

Figure 4). Curves 1 - x=-0.9 (0<x<X), curves 2 -
X=0 (X <X<X;),curves3- X=0.7 (X5 <X<1).
Next, a numerical analysis has been carried out for the

following dimensionless parameters: €¢=0.1, ®, =1.6,

w5 =02, nyg=-2, ®=0.1. For x=-0.9 and k =0.93
the corresponding bush phase trajectory for various
parameters y, and k" is shown in Figure 5-8.

-1

-2 —T - EFE *~ [ = A - T !
1.2 08 -04 0.4 08 @

o

Fig. 5. Phase trajectory of the bush movement for y, =0, k" =0

-1
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Fig. 6. Phase trajectory of the bush movement for y; =0, k" =0.02
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Curves 1 - v, =0, k" =0 (without tribologic processes),
curves 2 - y, =0, k" =0.02, curves 3 - vy,=0.1,
k" =0 (with heat generation), curves 4 - y,=0.5,

k" =0.02 (with tribologic processes).

¢

-2 —T T S T
12 08 -04 0 0.4 0.8 LY

Fig. 7. Phase trajectory of the bush movement for y, =0.1, k" =0

¢
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Fig. 8. Phase trajectory of the bush movement for y, =0.5, k" =0.02

Time histories of contact pressure, temperature on
surface contact and wear are reported in Figure 9-11.
Curves 1 correspond to the case when v, =0 (lack of heat

extension), k" =0 (lack of bush wear). Curves 2
correspond to the case of heat transfer lack (y, =0) and
k" =0.02 (heat generation included). Curves 3

correspond to the case where the shaft heat expansion is
taken into account (y,=0.1), but the bush wear is

neglected (k" =0). Curves 4 correspond to the case
where both mentioned parameters are taken into account

(v, =0.5,k" =0.02).

In the first case (y; =0, k" =0), where the tribological
processes are not taken into account the phase curve
approaches a stable orbit (curve 1 in Figure 5). In this case
the contact pressure is exhibited by curve 1 in Figure 9.

140]

2 4 (\FI' IIH'I| 4

N” (\F\

1 W
05 - W )

Fig. 9. Time histories of dimensionless contact pressure p(t) versus

dimensionless time t for different values of v, and k"

0(1)

4 q”\

0.5 4
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Fig. 10. Time histories dimensionless contact temperature 6(1,7) versus

dimensionless time t for different values of v, and k"

The bush wear (y,=0, k“=0.02) occurrence

decreases the contact pressure (curie 2 in Figure 9), which
tends to zero value (the corresponding phase curve is
shown in Figure 6). Note that after the wear process, the
bush moves in a periodic manner. Bush wear kinematics is
shown in Figure 11 (curve 2).

An inclusion of the shaft heat expansion (y,=0.1)
within the given heat transfer conditions ( Bi =10) yields

a periodic change of both contact pressure (curve 3 in
Figure 9) and temperature (curve 3 in Figure 10). The
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phase curve after a transitional process tends to a new
stable periodic orbit (curve 3 in Figure 7). For a general
case, i.e. where the tribological processes are taken into

account (y;=0.5, k" =0.02) and for the given heat

transfer conditions (Bi=10) the obtained results are
exhibited by curves 4 in Figures 8-11. In this case the
bush wear increase owing to the shaft heat extension, and
the contact pressure first increases and then it tends to
zero (curve 4 in Figure 9). The contact temperature being
changed in an oscillatory manner periodic first increases,
but then decreases with decrease of the contact pressure.
The Bush wear kinematics is exhibited by curie 4 in
Figure 11. Observe that the final wear amount is larger
than the initial shaft compression. In this case the phase
curve (after the bush is wear) approaches a stable periodic
orbit (curve 4 in Figure 8).

un-(.[)
4
0.8 5
0.4 +
0 —r————————
0 20 40 60 80 T

Fig. 11. Time histories of dimensionless wear u"(t) versus

dimensionless time T for different values of y, and k"

In the case when the bush wear is less than the shaft
thermal expansion (for instance in the case of y, =1,

Bi=10), the contact characteristics increase in an
exponential manner with time increase. In the latter case
the shaft can not succeed in making cooling in time.

V. Conclusion

We have proposed a novel model of vibrations of the
bush-shaft system with inclusion of both impacts and
tribological processes occurring on the contact surface. A
similar system, however without impacts, has been
studied earlier by the authors and it has been described in
references [2], [3]. The occurrence of self-excited
vibrations in a more simplified system with a gap (without
tribological processes and springs) has also been analyzed
in reference [7], [8].

Applying the Laplace transformation, our problem has
been reduced to that of the system of one non-linear
differential equation and one second-order Volterra

integral equation with respect to the contact pressure. A
kernel of the latter equation is the function of the sliding
velocity. Note that the change of the bush rotational
speed, contact pressure, surface contact temperature and
wear are mutually dependent. We have estimated
analytically the restitution coefficient for which a periodic
motion appears assuming small slope of friction
characteristics. We have shown, among the others, various
periodic motions exhibited by the analyzed system and we
have verified numerically our theoretical considerations
and predictions.

For an arbitrary restitution coefficient k™ € (K,,;,,1) two
periodic orbits (stable and unstable) appear on the phase
plane. Increase of the parameter k™ from K, to 1 yields
increase (decrease) of stable (unstable) periodic orbit. For
k* =1 the unstable periodic orbit is reduced to the point
(1,0). Decrease of the parameter k* causes approaching
of both stable and unstable periodic trajectories. For
k* =K,
orbit is born substituting two previous stable and unstable
orbits. In other words for k <k, a periodic motion is

not exhibited by the studied system.

The final conclusion follows: Tribologic processes has
an important impact on the studied system dynamics,
since they may change it even qualitatively.

, a bifurcation occurs and a halfly-stable periodic
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