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Non-smooth Periodic Dynamics of a Bush in Tribological Conditions 
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  Technical University of Łódź 
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 Abstract—In this work the model of a contact system with 
heat and wear generated by friction and/or impacts is studied. 
The methods and mathematical models of such systems applied 
so far by others contribute only partially to the description of 
complex dynamics. First, the analysis of contacting dynamic 
models omits tribological processes on a contact body surface. 
Second, the mentioned models do not include either the body 
inertia or impact phenomena usually appearing within the body 
clearance. We∗ contribute to the problem by matching both 
phenomena, which improves modeling of dynamic behavior of 
contacting bodies. Analysis of both stick-slip and slip-slip 
motion exhibited by the system is performed (impact-less 
behavior of this model has already been studied by the authors 
[1-3]), among the others. Analytically predicted vibro-impact 
stick-slip and slip-slip dynamics has been also verified 
numerically. 
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I. Introduction 
 Attention is focused on modeling of non-linear 
dynamics of two bodies consisting of a stiff bush with 
clearance  (see Figure 1). The bush is coupled with 
housing by springs with stiffness  and is mounted on 
the rotating thermo-elastic shaft 1. 
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Fig. 1. Analyzed system 

 
The following assumptions are taken: (i) the shaft rotates 
with such enough small angular velocity Ω  that 
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centrifugal forces can be omitted; (ii) non-linear kinetic 
friction occurs between the bush and the shaft; (iii) heat is 
generated on the contacting surface  due to friction; 
(iv) heat transfer between contacting bodies is governed 
by Newton’s law.  
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II. Equations for shaft rotational movement of an 
absolutely rigid bush 
 
 Let axis Z  be a cylinder axis. The equilibrium state of 
the moments of forces with respect to the shaft axis gives 
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where: )(211 tRRVr ϕ−Ω= &  relative velocity of the contact 

bodies,  is the coefficient of restitution,  ( ) is the 
bush velocity just before (after) impact,  is the moment 
of inertia of the bush per length unit,  is the kinetic 
friction coefficient depending on relative velocity,  is 
the contact pressure. The initial value problem is defined 
in the following way: 
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III. Thermo-elastic shaft  
 Inertial terms occurring in the equation of motion are 
omitted in our study and the problem may be considered 
as a quasi-static one. In the case of axially symmetric 
shaft stresses, the governing equations can be derived 
using theory of thermal stresses for an isotropic body (see 
Nowacki [4]). Applying cylindrical coordinates one gets 
the following set of equations 
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with the attached mechanical 
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 Velocity of the bush wear is proporti

er of friction force. Apow ccording to Archard's 
assu av
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where wK  is the coefficient usually identified 
rimentally. 

dial stresses 

ula 

expe
 Shaft ra ),( tRR  may be found knowing 
radial displacement ),( tRU  and temperature ),( tRT  

σ

1

from the following form

⎥
⎦

⎤
⎢
⎣

⎡
α−

ν+
ν

+
∂ν+

ν−
ν−

=σ
),(

1
)

1
1

21
),( 1

1

1

1

1

1 T
R

tRU
R

tEtRR
∂ ),(,(

1
1

tRRU

 
 The following notation has been applied: =)(tP  

),( 1 tRRσ−  - contact pressure;  - displacement 
oung

modulus; therma

),( tRU
component along radial direction in the shaft: 1E  - Y  

1 - Poisson's ratio; 1a - l diffusivity, 1ν α - 
thermal expansion coefficient; 1λ  - thermal conductivity; 

wK  - wea constant coefficient; ]1,0[∈η  - denotes the 
part of heat energy which goes on the wear. 
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olution Algorithm 
Let us introduce the following dimensionless parameters: 
IV. S
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dimensionless equations governing dynamics of the 
analyzed system have the form 
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 In order to solve the motion equations (15) one needs to 
know contact pressure  and wear 
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 The one-dimensional transient heat conduction equation 
under consideration takes the following dimensionless 
form 
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ereas the thermal boundary conditions are 
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and initial conditions are as follows 
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 Applying an inverse Laplace transformation ([2], [6]), 
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the nonlinear problem governed by Eqs. (22), (23) and 
4) is reduced to th following in ral equation of the 

second kind of Volterra type 
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IV. Analysis 
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proc ied 01 =γ , 0=wk ). For this case we 
have (τp )() τ= Uh . Our syst ned by equations 
(15) may exhibit four different periodic motions. Namely: 

) periodic orbit with one impact, where a stick d
appear; (ii) periodic orbit with one impact, where a stick-
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slip occurs; (iii) periodic orbit with two impacts, where a 
slip of the contacting bodies occurs; (iv) periodic orbit 
with two impacts, where a stick-slip ap . 
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Fig. 2. Zones of different
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 In what follows we assume th 1<<ε , 12

0 <<ω , 

δε=ω2
0 1−0η . It means that the system dynamics 

is exhibited in the interval ( min00 VV << ), where a 

decreasing slope of the kinetic friction coefficient is 
observed. 
 Results of our consideration allow us to give formulas 
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The obtained results are graphically presented in Figure 2 
where 
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which can be presented in the form 
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Fig. 3. Graphical solution of equation
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numerical analysis has been carried out for the 
imen less parameters: 
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Fig. 5. Phase trajectory of the bush movement for
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Fig. 6. Phase trajectory of the bush movement fo , r
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Fig. 7. Phase trajectory of the bush movement for

 
 1.01 =γ , 0=wk  

 
 

Fig. 8. Phase trajectory of the bush movement for
 

 Time histories of contact pressure, temperature on 
surface contact and wear are reported in Figure 9-11. 
Curves 1 correspond to the case when

 5.01 =γ , 02.0=wk  

 01 =γ  (lack of heat 

extension),  (lack of bush wear). Curves 2 
correspond to of heat transfer lack (

0=wk
the case 01 =γ ) and 

 (heat generation included). Curves 3 
the case where the shaft heat expansion is 

 account (

02.0=wk
correspond to 
taken into 1.01 =γ ), but the bush wear is 

neglected ( ). Curves 4 correspond to the case 
w ken i  accou  
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here both mentioned parameters are ta nto nt

( 5.01 =γ , 02k

 In the first c 1
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 a stable orbit (curve 1 in Figure 5). In
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e curv
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the contact e 1 in Figure 9. 
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Fig. 9. Time histories of dimensionless contact pressur )(e τp  versus 

dimensionless time τ  for d erent values of  and iff
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Fig. 10. Time histories dimensionless contact temp (e ),1 τθ  versus eratur

dimensionless time τ  for different values of 1γ  and wk  
 

 The bush wear ( 01 =γ , =wk  occurrence 
decreases the contact pressure (curie 2 in Figure 9), which 
tends to zer  (the corresponding phase curve is 
shown in Figure 6). Note that after the wear p s, the 

s in a periodic manner. Bush wear kinematics is 
shown in Figure 11 (curve 2). 
 An inclusion of the s heat expansion ( 1.01

02.0 )

o value
roces

bush move

 haft =γ ) 
within the g sfer conditions ( 10iven heat tran =Bi ) yields 
a periodic change of both contact pressure (curve 3 in 
Figure 9) and temperature (curve 3 in Figure 10). The 
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ph rv
 (c

ase cu e after a transitional process tends to a new 
t ur  in Fi

cal 
stable periodic orbi ve 3 gure 7). For a general 
case, i.e. where the tribologi processes are taken into 
account ( 5.01 =γ , 02.0=wk ) and for the given heat 
transfer conditions ( 10=Bi ) the obtained results are 
exhibited by curves 4 in Fi ures 8-11. In this case tg

the shaft heat 
he 

bush we extension, and 
the contact pressure first increases and then it tends to 
zero (curve 4 in e contact temperature being 
changed in an oscillato ner  periodic first increases, 
but then decreases wi ease of the contact pressure. 
The Bush wear ki s exhibited by curie 4 in 
Figure 11. Observe t nal wear amount is larger 
than the initial shaft co n. In this case the phase 
curve (after the bush is wea approaches a stable periodic 
orbit (curve 4 in Figu
 

ar increase owing to 

 Figure 9). Th
ry man

th decr
nematics i

hat the fi
mpressio

r) 
re 8). 

 
 

Fig. 11. Time histories of dimensionless wear  versus 

dimensionless time or different values of  and 
 

 In the case when the bush wear is less than the shaft 
thermal expansion (for instance in the case of 

 )(τwu

 τ  f  1γ
wk  

11 =γ , 
10=Bi ), the contact characteristics increase in an 

exponential manner with time increase. In the latter case 
the shaft can not succeed in m king cooling in time. 

V. Co
ovel model of vib

 incl  of both

 system with a gap (without 
analyze

tact pressure, surfac
depen

ic orbit is redu int 
. Decrease of the parame hing 
th stable and unstable periodic trajectories. For 

 a bifurcation occurs and a halfly-stable periodic 
rn substituting two previous stable and unstable 
other words for  a periodic motion is 

not exhibited by the studied system. 
 The final conclusion follows: Tribologic processes has 
an important impact on the studied system dynamics, 
since they may change it even qualitatively. 
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