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1. Introduction

In this work conditions of occurrence of periodic motion in systems with dry
friction and impacts are investigated. There are many examples in various mechanisms and
machines with gaps between the vibrating objects, where such type of dynamics is
generated by dry frictional self-excitation. A proper modeling and control of the mentioned
self-excited vibrations play a crucial role during investigation of dry frictional brakes,
grinding processes as well as various dynamics of contact pairs between mechanisms
elements.

We are aimed on estimation of parameters of the investigated system associated
with occurrence of periodic motion. In particular, both restitution coefficient and period of
periodic dynamics are defined.

A similar system, however without impacts, has been studied earlier by the authors
and it has been described in references [1-3]. In the mentioned works a novel model of
vibrations of the bush-shaft system with tribological processes occurring on the contact
surface has been proposed. The occurrence of self-excited vibrations in a more simplified
system with a gap has also been analyzed in reference [4].

2. Mathematical problem formulation

Attention is focused on modeling of non-linear dynamics of two bodies consisting
of a stiff bush with clearance 2A, (see Fig. 1). The bush is coupled with housing by

springs with stiffness &, and is mounted on the rotating shaft 1. The following assumptions
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are taken: (i) the shaft rotates with a such enough small angular velocity Q that centrifugal
forces can be omitted; (ii) non-linear kinetic friction occurs between the bush and the shaft.

Let axis Z be a cylinder axis. The equilibrium state of the moments of forces with
respect to the shaft axis gives

Fig. 1. Analyzed system

B, () + ky B3, () = f(V, RRRIP(D) , |, (D] < Aq» $2() 202, (1)
P =0, [p, (< B,, 4=, @)
¢ =—ki7, |@2] = Ay, 670, >0, 3)

where: V, = RQ - R¢,(¢) relative velocity of the contact bodies, & is the coefficient of

restitution, ¢ (@3 ) is the bush velocity just before (after) impact, B, is the moment of
inertia of the bush per length unit, f(V,) is the kinetic friction coefficient depending on
relative velocity, P(f)=—c,(R,,t) is the contact pressure. The initial value problem is
defined in the following way:

9,(0) =93, ,(0) =03, )
Relation approximating curve f(V,) has the following form
Fy-xV,, 0<V, <V
V,)=sgn(V,YF(V.), F(V,)= " 5
SV =seV)F(V,), F(,) {Fo—Kme,me<V, &)

where: Fy, x, Vy,;, are constant coefficients.
Shaft radial stresses 6 (R,f) may be found knowing radial displacement U(R,?)
from the following formula

GR(R’I) =

E, [l—vl URY i U(R,t)] ©

7 1-2v,|1+v, OR 1+v; R
The following notation has been applied: U(R,f) - displacement component along radial
direction in the shaft; £, - Young modulus; v, - Poisson's ratio.
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Upon integration of equation of the theory of elasticity [4]
Q*UR,) 108UR,Y 1
27— e —U(R,D=0 7
T tR o VR )
and taking into account mechanical boundary conditions U(0,£)=0, U(R,t)=-Uyh,(t)
and (6), the contact pressure is

E,
Ughy (1) . 8
A-2v)d+v)R, ° v ®
Let us introduce the following dimensionless parameters:

t P Qr, 1 l-a
T=-—,(P(T)=22",p=—,ao=£q',0)1= — [
t, A, P

Vo~V 27R P.RA, ke, R2t2 F
Ny =0 e=poyya, =u_0,:7= 2 L, 0y = W=,
VO @® BZQ Bz fi)

P(t)=

° @t
x=22, =222 f1)= fy, by(®) = hy(tD), p(1) = hy(2)
A, Ay ,
where:
B,A RA E
t.= .;(;_,I/;z l(p,P.= IUO ’V0=QR1_
Jo2nR(P. t. (1-2v)A+v)R
The dimensionless equations governing dynamics of the analyzed system have the
form ,
$(1) + 0p0(1) = sgn(w; - P)F@)p(1), Jo(v)] <1, ¢(1) o, ©)
HD)=0, |p(1)|<1, p(v)=0, (10)
¢+=_k‘p_’|¢|=1’ ¢—(P>0a (11)
¢0)=x, ¢0)=y (12)
where:
1+eam,, ¢ <omg, ®(2-Mg) <P
() = {1+, OMy <P <O . (13)
1+2e0, — €, 0; <P <0(2-7y)
3. Analysis .

First the case of bush vibrations for p(t)=#h;(t)=H(z), H(t)=1 for 1>0,
H(1)=0 for 1<0. Our system governed by equations (9) may exhibit four different

periodic motions. Namely:
(i) periodic orbit AMNA with one impact, where a stick does not appear ( A(x,0),

xe(—‘l,l), M(lryM): N(lin)’ yN =_kyM );
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(ii) periodic orbit ACMNA with one impact, where a stick-slip occurs ( A(x,0), xe(-1,1),

Clxc,0), ML), N(L,yy), yy =—koy);

(iii) periodic orbit BMNDB with two impacts, where a slip of the contacting bodies occurs

(B(-Lyg), M(Lyy), N(Lyy), yn =—kyu, D(-Lyp), yp=—-yg/k )

(iv) periodic orbit BCMNDB with two impacts, where a stick-slip appears

(B(-Lyg),Clxc,0y), ML), N(Lyy), yy =—koy, D(-Lyp), yp=-yp/k).
Below, we assume that £ <<1 and ®) <<1, and 1y <—1. It means that the

system dynamics is exhibited in the interval (0 <V, < V,,;, ), where a decreasing slope of

the kinetic friction coefficient is observed.

Results of our consideration allow us to give formulas for the coefficient of
restitution & for a general case of the following case

(K ycama> 0<0y <2-(4/3)e, x;<x<Xxg
komg, O<oy<2-(4/3), x,<x<lI
kparpp> 2-(4/3)e <oy <2, x<x<-1
kscrna> 2-(43)e<0, <2, —1<x<x,
komg 2-(04/3)e<w, <2, xy<x<l

k(x,(Dl)=< kBCMNDB’ 2<0)1 <2+(4/3)8, Xy <x<-1

kicamas 2<0,<2+(4/3), —1<x<x, (14)
koama 2<0;<2+(4/3), xp<x<l
kpcampes 2+ (4/3)e<®) <o, x5 <x <X
kpvvpp, 2+ (4f3)e<@y <o, xg <x<-1
\kAMNA, 2+(4/3)€<0)1 <w, ~l<x<l
where the restitution coefficient being sought is given explicitly in the following form
ks =1-@/3)nie +0(e?), 1 =420-%), (15)
"BMNDB=1+—T'32“_—T£—8+°(82)’ 1, =y-20+x), (16)
32+13)
kacrna =1 /0y = (13)(z] [0,)e - (1/8)(x, fo, X4 —-‘112 )oe + o(e?), a7
19 —1612 +130i(ty + 0)) - T30 (4 +1])
k pcanps =—+ >3 5 €+
@1 60, (120] +215)

(18)

2 2
D000 ) 5 4 o(e?), 1o =2+ A + 1202

16(t30f +213)
Note that the periodic motion (i) takes place for y,, <, . The latter observation provides
estimation x; < x <1, where
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x(0p) =1-(1/2)0} +(1/3)0ie + (1/8)0f (of —4)5e +o(e?). 19)
A natural limitation k 4., <1 yields the inequality x > x, , where
x (@) =1-0.50? - (1/3)we +(1/8)ol (o —4)de +0o(e?). (20)

The natural limitation introduced on the restitution coefficient (k poynpp <1) yields
X 2 x,, where

xp(01) = x () +(2/3)of —4)"%e. @1

Parameter zones for which the function k(x,®;) is estimated are graphically

presented in Fig. 2.
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Fig. 2. Zones of different periodic impact motions { (0(2, =02,8=2,¢=0.1)

Observe that the function k(x,0,) possesses the following values
k(x,0)=1,0<w0, <2, k(x,,0,)=1, 2<o; <o, k(l,0,)=1 at the boundaries, whereas
inside the considered interval it has the following minima

X€| X, s + 22
X€[ Xy, € 2

which can be presented in the form

. {1 -(2/3)oE, 0<o, <2+ (4/3) 24)

1-(4/3), 2+(4/3)<w, <»

Notice that for an arbitrary k* e(k,;,,]) there are two values of x;, x;

min >
(k(x;,0,)=k(x;,0;)=k" ). Let us introduce the following intervals
x| <X; <Xg,Xp <Xy <1 for 0<w; <2, 25)

X, <X| <Xg,X%g <Xy <1 for 2<m; <2+(4/3)e, (26)
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X, <x; <-l,—1<x; <1 for 2-(4/3)e<w; <. @7
It is not difficult to check that a periodic orbit associated with x; (decreasing part of the

coefficient k(x)) is stable, whereas a periodic orbit associated with x; (incresing part of
the coefficient &(x)) is unstable.

4. Conclusions

We have proposed a novel model of vibrations of the bush-shaft system with
inclusion of both impacts. We have estimated analytically the restitution coefficient for
which a periodic motion occurs assuming small slope of friction characteristics. We have
shown, among the others, various periodic motions exhibited by the analyzed system and
we have verified numerically our theoretical considerations and predictions.

For an arbitrary restitution coefficient k* e (k;, ,1) two periodic orbits (stable and
unstable) appear on the phase plane. Increase of the parameter k* from k,,, to 1 yields

increase (decrease) of stable (unstable) periodic orbit. For & * =1 the unstable periodic orbit
is reduced to the point (1,0). Decrease of the parameter k* causes approaching of both

stable and unstable periodic trajectories. For k* =k,;, a bifurcation occurs and a halfly-
stable periodic orbit is born substituting two previous stable and unstable orbits. In other
words for k <k, aperiodic motion is not exhibited by the studied system.
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