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Abstract 
 
In this work the model of a contact system with heat and wear generated by friction and possible impacts is studied. 
The methods and mathematical models of such systems applied so far contribute only partially to the description of 
complex dynamics. First, the analysis of contacting dynamic models omits tribological processes on a contact body 
surface. Second, the mentioned models do not include either the body inertia or impact phenomena usually 
appearing within the body clearance. We contribute to the problem by matching both phenomena, which improves 
modeling of dynamic behavior of contacting bodies. Analysis of both stick-slip and slip-slip motion exhibited by the 
system is performed (impact-less behavior of this model has been already studied by the authors [1-3]). 
 
1. Introduction 
 
Attention is focused on modeling of non-linear dynamics of two bodies consisting of a stiff bush with clearance 

ϕΔ2  (see Fig. 1). The bush is coupled with housing by springs with stiffness 2k  and is mounted on the rotating 
thermoelastic shaft 1. The following assumptions are taken: (i) the shaft rotates with such angular velocity Ω  that 
centrifugal forces can be omitted; (ii) non-linear kinetic friction occurs between the bush and the shaft; (iii) heat is 
generated on the contacting surface 1RR =  due to friction; (iv) heat transfer between contacting bodies is governed 
by Newton’s law. 
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Figure 1:  Analyzed system. 

 
2. Equations for rotational movement of an absolutely rigid bush 
 
Let axis Z  be a cylinder axis. The equilibrium state of the moments of forces with respect to the shaft axis yields 
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where: )(211 tRRVr ϕ−Ω=  relative velocity of the contact bodies, k  is the coefficient of restitution, −

2ϕ  ( +ϕ2 ) is 
the bush velocity just before (after) impact, 2B  is the moment of inertia of the bush for a length unit, )( rVf  is the 
kinematic friction coefficient depending on relative velocity, )(tP  is the contact pressure. Let the initial conditions 
be 
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The relation approximating the curve )( rVf  has the following form  
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where 0F , κ , minV  are the constant coefficients. 
 
3. Thermoelastic shaft 
 
In the analyzed case, the inertial terms in the equation of motion can be omitted and the problem may be considered 
as a quasi-static one. For axially symmetric stress of the shaft, the governing equations belong to the theory of 
thermal stresses for an isotropic body, formulated by Nowacki [4]. Applying cylindrical coordinates one gets the 
system  
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with the attached mechanical 
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and thermal boundary conditions 
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and with the following initial conditions 
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Velocity of the bush wear is proportional to a certain power of friction force. According to Archard's assumption [5] 
we have 
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Radial stress ),( tRRσ  in the cylinder may be found with the use of the radial displacement ),( tRU  and temperature 

),(1 tRT  by the application of the following formula 
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The following notation is used: ),()( 1 tRtP Rσ−=  - contact pressure; 1E - Young's modulus; 1ν - Poisson's ratio; 1a  

- thermal diffusivity, 1α  - thermal expansion coefficient; 1λ  - thermal conductivity; wK  - wear constant, ct  - time 
of contact. 
Integrating equation (5), with (7) and (12) taken into account, the contact pressure is determined: 
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4. Solution Algorithm 
 
Let us introduce the following dimensionless parameters: 
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The dimensionless equations governing the system dynamics have the form 
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In order to solve the motion equations (inclusion) one needs to know contact pressure )(τp  and wear )(τwu : 
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The one-dimensional transient heat conduction equation under consideration takes the following dimensionless form 
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whereas the thermal boundary conditions are 
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and initial conditions are as follows 
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Applying an inverse Laplace transformation [1, 6], our nonlinear problem governed by Eqs. (19), (20) and (21) is 
reduced to the following integral equation 
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which yields both dimensionless pressure )(τp  and velocity )(τϕ . The temperature is defined by the following 
formula 
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and mμ  are the roots of the characteristic equation 
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Note that the investigated problem has been transformed to the set of nonlinear differential equation (16), integral 
equation (22) describing angular velocity )(τϕ , and contact pressure )(τp . Temperature is defined by (23). A 
numerical analysis of the problem is performed using Runge-Kutta method by taking into account the following 
asymptotes 
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5. Analysis 
 
First the case of bush vibrations without tribological processes is studied ( 01 =γ , 0=wk ). For this case we have 

)()( τ=τ Uhp . Our system governed by equations (16) may exhibit four different periodic motions. Namely:  
(i) Periodic orbit with one impact, where a stick does not appear (Figure 2a); 
(ii) Periodic orbit with one impact, where a stick-slip occurs; 
(iii) Periodic orbit with two impacts, where a slip of the contacting bodies occurs; 
(iv) Periodic orbit with two impacts, where stick-slip appears. 
 

 

-1 -0.5 0 0.5 1

-2

-1

0

1

2

ϕ

ϕ

                             -1.2 -0.8 -0.4 0 0.4 0.8
-3

-2

-1

0

1

2

ϕ

ϕ  
( a )                                                                                       ( b )  

Figure 2:  Phase trajectory of bush movement in the absence of heat expansion 01 =γ  (a) and 2.01 =γ  (b).  
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Below, we illustrate conditions of the first type periodic orbit occurrence, i.e. with one impact during a period. We 
assume that 10 <<μ  and 12

0 <<ω , and 10 −≤η . It means that that the system works in the interval ( min00 VV << ), 
where the kinetic friction coefficient decreases with respect to the relative velocity of the bodies. The value of 
parameter k  has been detected with the accuracy of )( 2εo  and )( 4

0ωo , where a periodic motion may occur. It is 
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and the estimated period follows 
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Figure 3:  Behavior of dimensionless contact pressure )(τp  (a), dimensionless contact temperature ),1( τθ  (b) 

versus dimensionless time τ  for different values of wk  ( 2.01 =γ ); solid curves: 0=wk , dashed curves: 

01.0=wk . 

 
In the case of a periodic motion with two impacts, the coefficient of restitution has the following estimated value 
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and the associated initial conditions for realization of this motion with the accuracy of )( 2εo  and )( 4

0ωo  are  
 

                                        1)0( −=ϕ , ( )2
0

2
1010

10
10 )312(8

24
)0( ωτ++ετ

τ
+τ=ϕ . (30) 

 
A numerical analysis has been carried out for the following dimensionless parameters: 01.0=ε , 5.21 =ω , 

02.02
0 =ω , 20 −=η  (case (i)). For 1−=x  one obtains 987.0=k  from (28), and the corresponding bush phase 

trajectory has been shown in Figure 2a. 
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Observe that the occurrence of frictional heat generation ( 2.01 =γ ) causes an increase of the contact pressure (see 
Figure 3a) and periodic motion vanishes. Time evolution of the dimensionless temperature of the contacting 
surfaces is shown in Figure 3b. The following parameters have been taken during numerical computations: 10=Bi , 

0=wk , 1.0~ =ω . 
 
The contact pressure decreases (see dashed curves in Figure 3a), when wear occurs ( 01.0=wk ), and the contacting 
temperature decreases too (see the dashed curve in Figure 3b). 
 
6. Concluding Remarks  
 
We have proposed a novel model of vibrations of the bush-shaft system with inclusion of both impacts and 
tribological processes occurring on the contact surface. A similar system, however without impacts, has been 
studied earlier by the authors in references [1-3]. The occurrence of self-excited vibrations in a more simplified 
system with a gap (without tribological processes and springs) has been also analyzed in reference [7].  
Applying the Laplace transformation, our problem has been reduced to that of the system of one non-linear 
differential equation and one second-order Volterra integral equation with respect to the contact pressure. A kernel 
of the latter equation is the function of the sliding velocity. We have estimated analytically the restitution coefficient 
for which a periodic motion occurs assuming small slope of friction characteristics. We have shown, among the 
others, various periodic motions exhibited by the analyzed system and we have verified numerically the theoretical 
considerations.  
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