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Abstract: Oscillations and static bending deformation of a viscoelastic reinforced 
plate are considered. Analytical solutions are derived. An asymptotic technique, 
based on the homogenization method, is used for this purpose. In addition, a 
special perturbation approach is employed. An example is given for the purpose 
of illustration. The approximate analytical expressions are shown to adequately 
meet the requirements of optimal structural design. 

1. Introduction 

 Reinforced plates and shells are described by partial differential equations with rapidly varying 

coefficients, and their stress-strain state may be represented as a sum of a slow and a fast varying 

components [1-3]. In many physical problems, some variables may vary rather slowly, while others 

change fast. It is natural to ask whether it would be appropriate first to study the overall structure at 

hand, neglecting its local distinctive features, and next to investigate the system locally.  

 The paper is structured as follows. Section 2 presents the governing relationships. Section 3 

deals with the homogenization procedure in general. Solutions for the local problem and the 

boundary layer are given in Sections 4 and 5. Sections 6 is devoted to estimation of applicability of 

structurally orthotropic theory. Finally, a discussion and comments regarding the results obtained are 

given in Section 7. 

2. Governing relationships and estimates 

 The derivation of the equilibrium motion equations for reinforced plates and shells taking into 

account discrete arrangement of ribs is the subject of numerous studies [4-8]. One can conclude on 

the basis of the corresponding results that a 3D theory of elasticity is needed for the correct 

description of the plate behaviour in the vicinity of the rib. Out of these narrow regions the results 



obtained for different contact hypotheses coincide in the width of the rib is not large compared to the 

thickness of the plate. Therefore, the line contact approximation will be explored further. The ribs 

themselves are treated in the framework of the Kirchhoff – Klebsch hypotheses. Viscoelasticity 

according to [9-11] is taken into account. 

 Consider oscillations of a rectangular plate (0 ≤ x ≤ L1, -L2 ≤ y ≤ L2), supported by a regular 

array of N=2n+1 ribs. The stiffness extended along the x-direction. Each rib is symmetric with 

respect to the middle surface of the plate. Materials of plate and ribs are linear viscoelastic with 

instantaneous Young modulus E and Poisson coefficient ν. The governing equation of motion may be 

written as follows 
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and t is the time; ( tyxW ,, )  is the normal displacement; E1 is the rib Young modulus;  h is the plate 

thickness; r, R are the plate and rib material density; I is the moment of rib cross section;  δ(x) is 

Dirac delta-function; G(t - τ) is the  kernel of relaxation velocity. 

The boundary conditions, without loss of generality, can be written in the form 

,Lyfor0WW 2y ±===  (2) 

orL,0xfor0WW 1xx ===  (3) 

1x L,0xfor0WW ===  (4) 

 The condition of continuity and equilibrium are 

,WW,WW,WWW yyyyyy
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 The torsion rigidity of the ribs is neglect for the thin stiffness. 



 Because of the discontinuities in the coefficient of (1) one should find its solution in the 

framework of the distribution theory [12]. Namely, the solution is defined as distribution w satisfying 

the integral identity 
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where: z(x,y) is smooth function satisfying condition (2), (3) or (2), (4). 

 The problem (6),  (2),  (3)  (or (6),  (2),  (4))  has  a  countable real spectrum  {λk} (k = 1, 2, ...). 

The corresponding eigenfunctions wk are also real and form orthogonal basis in sense of a scalar 

product [w, z]. 

 The following Ansatz is used 

( ) ( ),tiexpy,xwW Λ=  

where: Λ = ω +ia,   ω is the frequency and a is the damping factor, and the following relation is 

applied 
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Then equation (1) and conditions (5) may be reduced to the following dimensionless form 
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 For a real reinforced plates ε << 1, α and  ρ  are of the order of ε-1. 

 The conventional approaches for reinforced plates are efficient in two opposite limiting cases. A 

large number of ribs is the first limit. This limit is analysed using the structurally orthotropic theory 

(SOT). A small number of ribs is the second limit. The corresponding technique is based on the 

separation of plate into elastic panels between the ribs in the complex with proper compatibility 

conditions on the rib lines. However, the case of a finite number of ribs is extremely important for 

applications. SOT can be correctly used for estimation in the low-frequency region of frequencies and 

displacements. At the same time the application of SOT is not correct for transverse shear forces and 

the description of bending moments. Unfortunately, exploring the technique corresponding to the 

small number of ribs limit is not efficient here. To overcome these difficulties a homogenization 

method is used. 

3. Homogenization  procedure 

An explanation of the problem stated above is important for both theoretical and computational 

considerations. Due to the complexity of its structure, any kind of calculation is difficult to perform 

for a reinforced plate. An approximation of the problem at hand by a “homogenized” one is therefore 

desirable. The method used here is a variant of the multiscaling technique. It is well-known that this 

is a general method applicable to a wide range of problems. The problems are characterised by 

having two physical processes, each with its own scales, and with the two processes acting 

simultaneously.  “Slow” (η = η1) and “fast” (ϕ) variables will be used. Then derivative 
1η∂

∂   has the 

form 
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The solution of boundary value problem (7) is represented in the form of a formal expansion 
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It is assumed that Wj(x,η,ϕ + 1) = Wj(x,η,ϕ),  j = 1,2, ... . 

Substituting series (9) into boundary value problem (7), taking into account relation (8) and splitting 

it with respect to powers of ε, one obtains a recurrent sequence of boundary value problems 
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Upon splitting, the boundary conditions take the following form 

for ,WW,WW:d,0 2ii02ii0 ξξ−ξξ− −=−==ξ  (11) 

or ,WW,WW 2ii02i01 ξ−ξ− −=−=  (12) 

for .WWW;WW:5.0 2i1ii02ii0 η−ϕ−η− −−=−=±=η  (13) 

Here i = 0,1,…;    Wi =0 for i ≤ 0; .
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Consider the following homogenization operator 
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The following is easily obtained from equations (10) – (13) by applying the homogenization operator 

defined by (14) 
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for  ,,ŴW,ŴW:d,0 2ii02ii0 ξξ−ξξ− −=−==ξ  (20) 
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Equations (15) and (16) are combined to yield 
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where D1 = D + E1I/b;   Λ1 = Λ2(r + R/b). 

4. Local solution 

Using boundary value problems (15) – (22), one can obtain a homogenized (“global”) solution. 

However it is very important to calculate the local component Wi (i ≥ 1) of the initial solution of the 

problem as well. Following boundary value problems exists for the functions Wi
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 The conditions of compatibility are automatically satisfied. Using equation (23) and boundary 

conditions (26), one obtains 
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where: F4(ϕ) is a periodical function,   F4(ϕ) = ϕ2(ϕ -1)2  for  0 ≤ ϕ ≤ 1. 

 For the governing variables, 

( ) .byyW
b
R

xb
IE

b24
1W 22

0
2

4

4
1

1 −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Λ−

∂

∂
=  (27) 

The expression for Wi for i >1 may be written as follows 
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The functions cj
(i)(ξ,η) satisfy boundary conditions (26). 

7. Concluding remarks 

 A new approximate solution of the viscoelastic problem for a reinforced plate has been 

developed. The homogenization procedure and the averaging approach have made it possible to 

obtain an analytical form. The method can also be advantageously used for analysis of viscoelastic 

shells with periodic structures. 

 It is very important that obtained solution takes into account the real arrangement of the ribs.  

 Some problems in the theory of plates and shells, for which solutions were found at an initial 

level, are closed in certain aspects to those proposed above. However, a number of difficulties arise 

when studying reinforced plated and shells which can not be overcome at the “intuitive level”. These 



relate especially to dynamic and non-linear problems with realistic boundary conditions. It is also not 

clear a priori which terms in the initial equations have to be remain during the subsequent 

simplification. These difficulties can be overcome if we construct a grounded asymptotic procedure 

only. So, above proposed solution is important from the engineering standpoint.  
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