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Abstract: An n-mass damped oscillator with linear relaxation governed by 1D 
differential-difference equation is analyzed. Two points Padé´approximation 
is applied yielding new mathematical models.  

1. Introduction 

Construction of an accurate continuous model for discrete media is an important topic in various 

fields of science [1-8]. We deal with a 1D differential-difference equation governing the behavior of a 

n-mass oscillator with linear relaxation. It is known that a string-type approximation is justified for 

low part of frequency spectra of a continuous model, but for free and forced oscillations a solution of 

a discrete model and of a wave equation can be quite different. The difference operator makes 

analysis difficult due to its non-local form. Approximate equations can be gained by replacing the 

difference operators via a local derivative operator. Although the application of a model with 

derivative of more than second order improves the continuous model, a higher order of approximated 

differential equation seriously complicates a solution of continuous problem. It is known that 

accuracy of the approximation can dramatically increase using  Padé approximation [2-8]. In this 

report, one- and two-point Padé approximation for clarifying of structural damping models proposed 

and analyzed in [9-12] are applied. 

Many different phenomenological theories are used to describe energy dissipation in oscillating 

elastic bodies. Usually used viscous damping models which produce uniform damping rates are often 

inadequate for describing of real behavior of elastic structures. In [9-11] was proposed a new 

phenomenological dissipation model for beams, where the damping is assumed to be proportional to 

the bending rate of the beam  
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For many cases equation (1) gives solutions where the damping rate increases with frequency. 

We will analyze applicability of equation (1) using 1D discrete media. 

2. String model 

We deal with a n-mass damped oscillator. The governing equations of motion follow 
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where:  is the displacement of the j-th point;  is the external force acting on j-th point; )(ty j )(ts j
γ

γ  

the coefficient of linear relaxation; m is the mass; c is the rigidity.  

The following initial conditions are applied  
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Usually for large values of n the string-like continuous approximation to the above discrete 

problem is applied: 
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where: . hnl )1( +=

Function s(x, t) represents a continuous approximation of the function of discrete argument 

. Observe that it is defined with an accuracy to any arbitrary function which equals zero in 

nodal points x = j, j = 0,1,2,...,n. For this reason, from a set of interpolating functions one may 

choose, say, the most smoothened function owing to filtration of fast oscillating terms. This problem 

has been solved in reference [2], where the following function has been applied  
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The following relation between discrete and continuous systems holds 
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Difference operator in system (2) can be represented by the following pseudo-differential 

operator  
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The following Maclaurin series is applied  
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Taking into account the first term in the series (9), the string-like continuous approximation (5) 

is obtained. Taking into account the three first terms, the following higher order approximation is 

found 
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Initial conditions here and further have the form (7). 

The problem associated with boundary conditions requires a more subtle analysis. Note that 

boundary conditions for n-mass oscillator (3) are transited automatically into boundary conditions for 

string (6). However, if a continuous approximation has a relatively high order (10), one has to define 

for both k < 0 and for k > n+1. If we choose  for k < 0 and  for k > n+1 to satisfy 

periodicity translation conditions, then boundary conditions must keep the translation symmetry 

( , etc.). Finally, the following boundary conditions associated with equation (10) are 

obtained  
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Previously we used the development of a pseudo-differential operator into the Taylor series. 

However, more effective results may be obtained using Padé approximation. In [3-6] the continuous 

models are constructed using one-point Padé approximation. Let us take into account only two terms 

of expansion (9). Then one has the following continuous model 
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The Padé approximation of the truncated series (9), when one takes into account only two terms 

of expansion, has the form 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂

∂
2

22

2

2

12
1

x
h

x
. 

It leads to the following continuous model 

=−+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
− xxttt ychymy

x
h 2

2

22
)(

12
1 γ ),(

12
1 2

22
txs

x
hc ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−  (14) 

with boundary conditions (6). 



In equation (14) one has term txxyδ− , but also some additional terms. 

Owing to references [5-8] it is clear that the application of two-point Padé approximation is more 

efficient than the one-point Padé approximation. In order to construct a two-point Padé 

approximation, two limiting points are required. In our case one of the mentioned points is defined by 

equation (5). The second limiting case is provided by the following consideration. Namely, 
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 natural frequencies of a discrete system and its continuous approximation should coincide 

[5-8]. It leads to equation mcnk 21 == +αω , and the sought operator is 
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where: . 22 25.0 −−= πα

Hence a continuous approximation is governed by the equation 
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with the boundary conditions (6). 

3. Beam model 

Now  transversal vibrations of the mass chain are analysed. 

The governing equations read 
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with boundary conditions (3). 

A typical continuous approximation of the system (16) reads 
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The obtained continuous approximation can be improved. For this purpose one may formally 

replace a difference operator in equation (16) with a pseudo-differential operator in the following 

way 
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The pseudo-differential operator can be developed into the Maclaurin series of the form  
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Taking into account only the first term in expression (18), one obtains the classical continuous 

approximation (16). However, taking into account the first three terms, the obtained approximation 

reads 
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with boundary conditions  
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A transformation of the first two terms of the series (18) into the Padé approximant yields the 

following result: 
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Hence, a continuous approximation reads 
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Two-point Padé approximants leads to the following equation 
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where: ( ) ( )4422 1616 ππβ −= h . 

Comparing of equations (19), (20) with equation (1) shows presence of additional terms.   

4. Conclusions 

Proposed in [9-11] phenomenological model of energy dissipations needs further improvement, but 

the proposed idea can be justified. 
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