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Abstract: An influence of ring stiffness distribution along shell defined through
k = k(x) on the shell stiffness on example on axially symmetric problem for

cylindrical shell is investigated.

1. Introduction

In order to compute stiffened shells usually two approaches are applied. The first one is based on
discretization of a studied construction using either FEM or FDM. An associated inversed problem is
reduced to mathematical programming. Difficulties in getting a reliable solution increase with
increase of rings number N. Note that for non-uniformly stiffened shell N is equal to the number of
design parameters.

The second approach is based on homogenization of the differential equations and it attracts
recently attention of both mathematicians and mechanical engineers (see, for instance, [1-4]). For the
inversed problems this approach is reduced to an optimal design of a construction with distributed

parameters [5, 6].

2. Main results
The differential equation governing deflection between rings of considered shell has the

following form

w4 bw = q, (1)
where: b= 12(1 7v2)/ R*h?;q=P(x)/D;D =Eh’/12(01-v?); R is shell radius; h is shell
thickness; E,v are Young modulus and Poisson’s coefficient of the shell and rings materials.

The coupling condition of the i-th ring can be formulated in the following manner

wo=w W)= (W) (W) = (W) W) - () = k(X &)



where (), () are intervals located to the right and to the left of the point X =is, where s is the
distance between rings;  K(X) = EF(X)/ (R2 D), F(x) is the area of transversal rings cross section.
The boundary conditions on edges X = 0, L , for sake of simplicity, are taken in the form
W=w"=0 3)

If the rings number is large (s/ L=e<< 1), then in order to solve the problem (1)-(3), one can
apply the asymptotic method of homogenization [1, 2].
Let us introduce the variable
E=xl¢e @

which is independent on X, and therefore, the associated differential operator reads

’ ’ =1,
W =Wy, +¢& W§

®)
The deflection W is sought in the form
w=wo (x)+&twy (x,&)+ 7w (x,€)+....., (©6)
where W; (i = 1,2...) are periodic functions with the period L and with respect to & .
Substituting (5), (6) into (1)-(4), and carrying out the asymptotic splitting with respect to ¢

powers, the following relations are obtained (periodicity conditions for W; with respect to &£ are also

applied):
WLE +Wo + /Mg = @)
o Wiz Wi )520 = (Wl;Wi,g;Wi',f )§:L ; ®)
Wi'e ooy = WiTe oo = K (X)W ; ©)
Wo/x=0,L =Wo,L/x=0,L =0 - (10)

Note that during derivation of relation (9), it has been assumed that K : (X)=LK/S~1.

Integrating (7) with respect to £ , one gets
w = (s~ A 1244 CLOE + G007 + G006+ Cy(x).

Determining C; —C, from conditions (8), one gets

w, =K*(x)(q—w(')f’x—mo)fz(g—l_)z/m. (11

Substituting (11) into (9), the following homogenized equation for W, is obtained

w(')f’x+(K*(x)+ﬂ}No =q. (12)



Equation (12) governs the axially symmetric deformation of a structurally orthotropic shell with
continuously distributed rings stiffness along the whole shell length. The corrector (11) accounts
discreteness of rings distribution.

Consider first the case when variation of the rings stiffness is small, i.e.
K*(x)+ 8 =a+z0(x), (13)
where: a = const; ¢ <<1.
The following series is assumed
Wy = Wqo + &1 Wpp +£12W02 +on (14)
Substituting relations (13), (14) into equation (12) and comparing the coefficients standing by

the same power of & to zero, one gets
v _
Woo,x +aWpo =4 (15)

Wp + aWo; = —p(XWoi_y, i=12.... . (16)
Developing the functions q(x), qo(X), Wp; (X) , Wpi (X) into the Fourier series in the interval [0, L]

one obtains
o0 o0 0
A=) dpsinanx  p=>"pycosanx Wo = Y Apsinanx, 17
n-1 n-1 n-1

where: 0n,@0n, A, -const, a =2z/L.

Substituting (17) into (15), (16) one obtains
Aon :qn/(o/‘n4 +al Ain =B /(a4n4 +a) (18)
Bin =0.5¢ (A1 = Ak-n ) »
and in result the following approximation holds
Wy = ng Ay sin anx . (19)
n=l =l

The corrector W; is found from the relation (11).

The solution (19) can be also extended into the case of non-small rings stiffness variations

(& ~ 1) after an application of the Padé approximations [7].

In what follows the Padé approximation [1/1] for the series coefficients (19) gives

Wo :[[AOn A + &1 (Al — AOnAzn)]/(Aln —51A2n)]Sin0mX~ (20)



Consider the case a + SlgD(X) = C(l — &) cos Zax), C,q—const. Integral rings stiffness is constant

for any &; in this case. The coefficients of the series (18) take the form (for a =1):
2
Agan_1=49/1(2n-1)z(2n 1) +c]],
4
Aano1 =050(A 103+ A_iana JI@N-D* +cl; A5y =0.

Now one can investigate how a change of ring stiffness influences a change of stiffness of the
whole shell. For this purpose one must compare W, with WS (note that shell deflection possesses
rings with the same stiffness (£=0)):

Wy — W; = D2n,1 sin(2n - I)X N
where: Dyn_y =21 A anog /(A anot &1 A2 a0t ).
The dependence D,/ Ay, characterizes shell stiffness variation (for g = const the fundamental

contribution into deflection is introduced by the first harmonic of the series (20)), is reported in

Figure 1.
The curves 1-5 correspond to &1 = 0.1;0.3;0.5; 0.8; 1, respectively.
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Figure 1. Dependence D; /Ay vsc.
Analysis of the results shown in Figure 1 yields a conclusion that for given load g = const, the

given rings stiffness distribution is particularly suitable in the interval 0.05 < ¢ < 0.15, and allows to

decrease the largest shell deflection on amount of 30%.

Consider now the problem of optimisation, where the shell flexibility is taken as the being

minimized functional of the form



L
| :J.qwdx—>min,( , @1
0

with the constraints

N
k-Za(x—nl)dx:c. 22)

n=0

= 1

If zero order approximation is used (W = WO), then one has to add (10), (12) to the constraints.
Therefore, following [5], the following new control function (p(x) is applied
k=a+ysing, a@=05Kuin +Kmax)» 7 =0.5Kmin —Kmax )- (23)

The inversed problem reads

L L
| =Iqwdx—>min¢ ; |1=J.sin(/)dX=C_—a; (24)
0 0 Y
W(I)YX +(a+ysing) Wy =0; (25)
W,/ x=0,L =W0/x=0,L =0- (26)

Following the approaches applied in the theory of optimal control with one variable, one gets the
optimality condition of the problem (24)-(26). For this purpose one can write the expressions

governing first integrals (24) variations and equation in variations corresponding to (26), of the forms

L L

Al :Iq&Ndx; B :J-cosgz)&godx; (27)
0 0

(iN(I)VX +(a+ysing) MWy +ycosp Wy Op=0. (28)

Notice that equation (28) is obtained first after substitution Wy + W, @ + ¢ instead of W,

and @ in (25), and after extraction of the terms linear with respect to oW, and d¢ .

In what follows we are going to express the first variation of the minimized functional through

the variation 5 .
For this purpose the conjugated variable V(X) is introduced, which is defined through the
condition that the expression for variation of the minimized functional does not include oy .

Multiplying the left hand side of equation (28) by v(x) , and integrating it from O to L, one gets

L
J-V[&N(I)YX + (a + ysin (p)&NO + 7 cos (pwoégo}ix =0.
0



Next carrying out the integration by parts with inclusion of (25), (26), the above integral is

transformed to the following form

[(v Vo (a + ysin (p)\/)&NO + ¥ VW, COs @ 5(p}ix s 29)

= 1

and the following boundary conditions are applied

V/x=0,L =V/x=0,L =0 (30)

3. Conclusions

To conclude, the considered problem of optimization has been reduced to that of solution of the
boundary value problems (12), (3) and (35), (30).

The obtained non-linear boundary value problem can be solved numerically using either one of
the successive optimization method [5] or the perturbation technique already used while solving the

direct problem (13)-(16).
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