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Abstract: An influence of ring stiffness distribution along shell defined through 
 on the shell stiffness on example on axially symmetric problem for 

cylindrical shell is investigated. 
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1. Introduction 

 In order to compute stiffened shells usually two approaches are applied. The first one is based on 

discretization of a studied construction using either FEM or FDM. An associated inversed problem is 

reduced to mathematical programming. Difficulties in getting a reliable solution increase with 

increase of rings number N. Note that for non-uniformly stiffened shell N is equal to the number of 

design parameters. 

 The second approach is based on homogenization of the differential equations and it attracts 

recently attention of both mathematicians and mechanical engineers (see, for instance, [1-4]). For the 

inversed problems this approach is reduced to an optimal design of a construction with distributed 

parameters [5, 6]. 

2. Main results 

 The differential equation governing deflection between rings of  considered shell has the 

following form 

qbwwIV =+ , (1) 

where: ( ) ( ) )1(12/;/;/112 23222 ν−==−= EhDDxPqhRvb ;  is shell radius;  is shell 

thickness; 

R h

ν,E  are Young modulus and Poisson’s coefficient of the shell and rings materials. 

 The coupling condition of the i-th ring can be formulated in the following manner 

( ) ( ) ( ) ( ) ( ) ( ) ( ) isxwxkwwwwwwww =
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where ( )+, ( )- are intervals located to the right and to the left of the point isx = , where s is the 

distance between rings; )()()( 2DRxEFxk = ,  is the area of transversal rings cross section. )(xF

 The boundary conditions on edges Lx ,0= , for sake of simplicity, are taken in the form 

0=′′= ww . (3)  

 If the rings number is large ( )1/ <<= εLs , then in order to solve the problem (1)-(3), one can 

apply the asymptotic method of homogenization [1, 2]. 

 Let us introduce the variable 

εξ /x=  (4) 

which is independent on x, and therefore, the associated differential operator reads 

ξε www x ′+′=′ −1
. (5) 

 The deflection w is sought in the form 
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where  are periodic functions with the period L and with respect to ( ...2,1=iwi ) ξ . 

 Substituting (5), (6) into (1)-(4), and carrying out the asymptotic splitting with respect to ε  

powers, the following relations are obtained (periodicity conditions for  with respect to iw ξ  are also 

applied): 
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0,0/,0,0/0 =′′= == LxLLx ww . (10) 

 Note that during derivation of relation (9), it has been assumed that ~1. SLKxK /)(* =

 Integrating (7) with respect toξ , one gets 
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0,01 xCxCxCxCwwqw IV
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 Determining  from conditions (8), one gets 41 CC −
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x −−−= ξξβ . (11) 

 Substituting (11) into (9), the following homogenized equation for is obtained 0w
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*
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 Equation (12) governs the axially symmetric deformation of a structurally orthotropic shell with 

continuously distributed rings stiffness along the whole shell length. The corrector (11) accounts 

discreteness of rings distribution. 

 Consider first the case when variation of the rings stiffness is small, i.e. 

( ) ( )xaxK ϕεβ 1
* +=+ , (13) 

where: .1  ; 1 <<= εconsta  

 The following series is assumed 
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1011000 +++= wwww εε  . (14) 

 Substituting relations (13), (14) into equation (12) and comparing the coefficients standing by 

the same power of 1ε  to zero, one gets 
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 Developing the functions ( ) ( ) ( )xwxxq i0,,ϕ ,  into the Fourier series in the interval [0, L] 

one obtains 
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where: LAq innn /2   const,-  ,, παϕ = . 

 Substituting (17) into (15), (16) one obtains 
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and in result the following approximation holds 

∑∑
∞

=

∞

=

=
1

1
1

0 sin
i

in
i

n

nxAw αε . (19) 

 The corrector  is found from the relation (11). iw

 The solution (19) can be also extended into the case of non-small rings stiffness variations  

( 1ε  ~ 1) after an application of the Padé approximations [7]. 

 In what follows the Padé approximation [1/1] for the series coefficients (19) gives 
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 Consider the case ( ) ( ) constqcxcx −−=+ ,   ,2cos1 11 αεϕεα . Integral rings stiffness is constant 

for any 1ε  in this case. The coefficients of the series (18) take the form (for 1=α ): 
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 Now one can investigate how a change of ring stiffness influences a change of stiffness of the 

whole shell. For this purpose one must compare  (note that shell deflection possesses 

rings with the same stiffness (

*
00 with ww

0=ε )): 
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where: ( )12,2112,112,1112 / −−−− −= nnnn AAAD εε . 

 The dependence  characterizes shell stiffness variation (for 011 / AD constq =  the fundamental 

contribution into deflection is introduced by the first harmonic of the series (20)), is reported in 

Figure 1. 

 The curves 1-5 correspond to 1 ;8.0 ;5.0 ;3.0 ;1.01 =ε , respectively. 

 
Figure 1. Dependence  vs c. 011 / AD

 Analysis of the results shown in Figure 1 yields a conclusion that for given load , the 

given rings stiffness distribution is particularly suitable in the interval

constq =

15.005.0 << c , and allows to 

decrease the largest shell deflection on amount of 30%. 

 Consider now the problem of optimisation, where the shell flexibility is taken as the being 

minimized functional of the form 
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with the constraints 

∫ ∑
=

=−⋅
L N

n

cdxnlxk
0 0

)(δ . (22) 

 If zero order approximation is used ( )0ww = , then one has to add (10), (12) to the constraints. 

Therefore, following [5], the following new control function ( )xϕ  is applied 

ϕγα sin+=k ,   ( )maxmin5.0 kk +=α ,   ( )maxmin5.0 kk −=γ .                   (23) 

 The inversed problem reads 
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0,0/0,0/0 =′′= == LxLx ww . (26) 

 Following the approaches applied in the theory of optimal control with one variable, one gets the 

optimality condition of the problem (24)-(26). For this purpose one can write the expressions 

governing first integrals (24) variations and equation in variations corresponding to (26), of the forms 
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 Notice that equation (28) is obtained first after substitution δϕϕδ ++   ,00 ww  instead of  

and 

0w

0ϕ  in (25), and after extraction of the terms linear with respect to 0wδ  and δϕ . 

 In what follows we are going to express the first variation of the minimized functional through 

the variationδϕ . 

 For this purpose the conjugated variable ( )xv  is introduced, which is defined through the 

condition that the expression for variation of the minimized functional does not include 0wδ . 

Multiplying the left hand side of equation (28) by ( )xv , and integrating it from 0 to L, one gets 
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 Next carrying out the integration by parts with inclusion of (25), (26), the above integral is 

transformed to the following form 

( )( )[ dxvwwvv IV
L
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and the following boundary conditions are applied 

0,0/,0/ =′′= == LxLx vv . (30) 

3. Conclusions 

 To conclude, the considered problem of optimization has been reduced to that of solution of the 

boundary value problems (12), (3) and (35), (30).  

 The obtained non-linear boundary value problem can be solved numerically using either one of 

the successive optimization method [5] or the perturbation technique already used while solving the 

direct problem (13)-(16). 
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