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Abstract: In this work a Duffing type self-excited oscillator with dry friction and 
harmonically driven is analyzed. Two Mielnikov’s criterions associated with 
decomposition of two homoclinic orbits occurred in the non-perturbed system are 
formulated. The obtained analytical results are in agreement with the earlier 
numerical investigations. 

1. Introduction 

The considered system has been already studied in references [1, 2], where using the 

Mielnikov’s method [4] the fundamental relations defining one Melnikov’s function and one 

homoclinic chaos threshold for mechanical systems with dry friction have been formulated. The 

numerical investigations of the studied system have been reported in [3], where the analytical results 

given in references [1, 2] have been confirmed for a certain set of parameters. Furthermore, the 

numerical results reported in reference [3] indicate a possibility of generation of a second homoclinic 

bifurcation, which appears for very small values of of the exciting amplitude. We are aimed to derive 

analytical conditions for numerically discovered additional homoclinic bifurcation. 

2. Analyzed system 

We consider harmonically driven self-excited Duffing oscillator shown in Fig. 1.  

Its dynamics is governed by the following equation  

( )( )3
*cosx ax bx t x T x vε γ ω δ− + = − − −�� � � , 

where the friction force is defined in the following way  

( ) ( ) ( ) ( 3
* 0 * * *sgnT x v T x v x v x vα β− = − − − + −� � � � ) . 



�v = const

( )k zc

( )θ � �z v−

m

z

Γ Ωcos τ

 
Fig. 1. Scheme of the investigated system with dry friction  

 

For  one gets the following autonomous system  0=ε

3 0x ax bx− + =�� . (1) 

Equilibria of this system are yielded by the relation  
3
0 0 0bx ax− = . 

There are three equilibrium positions: 01 0x =  and 02,3x a b= ± . The first is saddle, whereas 

two others are centers. The system (1) possesses the constant value of full energy of the form  
2 2 4

2 2 4 2
x ax bx C

− + =
�

, 

where C is constant. Phase trajectory reads 

4
2

2
bxx C ax= ± + −� . 

The following homoclinic trajectory is associated with saddle (for 0C = )  

2

2
bxx x a= ± −� , 

and a solution to this differential equation follows 

( ) (0
2 secha )x t
b

= ± at . (2) 

Its differentiation yields  

( ) ( ) (0
2 sech tgh )x t a at at
b

=� ∓ . (3) 

Formulas (2) and (3) define the parametric equations of two homoclinic orbits ( ) ( )( )0 0,x t x t�  

associated with the saddle type equilibrium. The Mielnikov [4] function is defined in the following 

way 
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and after some transformations one obtains 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0 0 0 *
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Using (2) for the sign “+” and (3) for the sign “-” one gets 

( )0 1 2 3 4 5 6M t I I I I I I+ = + + + + + , (4) 

where:  

( ) ( ) ( )1 0
2 sech tgh cosI a at at t t
b

γ ω
∞

−∞

= − +∫ dt , 

( ) ( ) ( )( )2 0 0 *
2 sech tgh sgnI T a at at x t v dt
b

∞

−∞

= −∫ � , 

( ) ( )
4

4 4
3 2

4 sech tghaI at
b
β ∞

−∞

= − ∫ at dt , 

( ) ( )
3
2

3 3 3
4 *

23 sech tghI v a at
b

β
∞

−∞

⎛ ⎞= − ⋅ ⎜ ⎟
⎝ ⎠ ∫ at dt , 

( ) ( ) ( )
2 2

* 2 2
5

2 3
sech tgh

a v
I a

b
α β δ ∞

−∞

− −
= ∫ t at dt , 

( ) ( ) ( )2
6 * *

2 sech tghI v v a at at dt
b

β α
∞

−∞

= − − ∫ . 

Relation  is defined in the following way  1I

1 11 12I I I= + , (5) 

where: 

( ) ( )11 0
2 cos sech tgh cosI a t at at t
b

γ ω ω
∞

−∞

= − ∫ dt , 

( ) ( )12 0
2 sin sech tgh sinI a t at at td
b

γ ω ω
∞

−∞

= ∫ t . 



In order to compute  observe that hyperbolic secans and cosinus are even functions, whereas 

a hyperbolic tangens is an odd function. Therfore their product is an odd function, and its integral 

from  to  is . 

11I

−∞ ∞ 11 0I =

On the other hand , including the integral with the same limits as earlier, can be found from 

integral tables, and one gets  

12I

12 0
2 sin sech

2
I a t

b a
πωπ γω ω ⎛ ⎞= ⎜ ⎟

⎝ ⎠
. 

Substituting obtained in the above relations to (5) one gets 

1 0
2 sin sech

2
I a t

b a
πωπ γω ω ⎛= ⎜
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⎞
⎟

*

*

. (6) 

Before computing  some necessary relations will be derived. Consider first the following 

relation  

2I

( ) ( )( ) ( )
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x t x v

x t x t v
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which defines the under integral function depended on the parameter . Note that the under integral 

expression sign change occurs when a velocity of mass m is equal to the belt velocity . Using (3) 

one gets 

v*

v*

( ) ( ) ( )* 0
2 sech tghv x t a at at
b

= =� ∓ . 

After some transformations one obtaines  
2

2 *
2 0

2
bvx x

a
− + = , (7) 

where the following relation has been applied 

2sechx at=  

Equation (7) is a second order polynomial with the determinant ( )2 2
*2a bv a∆ = − 2  responsible 

for its roots number For ; 0∆ < ( )2v a b∗ >  it has no real roots. If one assumes that ; 0∆ ≥

( )2v a b∗ ≤ , then equation (7) has two following solutions  

2
*

1,2 2

1 1
2 4 2
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= ± − . 

Therefore one obtains  
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and 
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Observe that computation of integral 2I  depends on the determinant ∆ . First we consider 

. Recall that in this case equation (7) does not have real roots. Since the under integral 

function is odd, hence  

0∆ <

( ) ( )2 0
2 sech tgh 0I T a at at dt
b

∞

−∞

= − =∫ . 

In the second case, i.e. for  one obtains  0∆ ≥
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and after integration  
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Taking into account (9) one obtains  
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Finally, the earlier considerations yield  
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On the other hand, the integral reads I3
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and hence 
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16
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Furthermore  

4 6 0I I= = , (12) 

because one should compute an integral of the odd function in the limits from −∞  to . Integral 

of  reads 

∞
I5
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5 *

2 3 tgh
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and hence  

(
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2
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4 3
3
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Substituting relations (6), (10), (11), (12) and (13) to (4) one obtains 
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Stable and unstable manifolds intersection condition has the following form  

( )
5 3
2 2
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Now we are going to compute the Mielnikov function defined by (2) for the sign  “+” and (3) for 

the sign“-”. In this case one gets 

( )0 1 2 3 4 5 6M t I I I I I− = − − + − + − I . (14) 



Substituting relations (6), (10), (11), (12) and (13) to (14) one obtains 
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2 2

2
0 0 *2

2 2
* *

0 *2 2

*

2 16 4sin sech 3
35 32

2 1 1 1 12
2 4 2 2 4 2 2 .

0
2

a aM t a t v
b b ba

a bv bvT f
b a a b

afor v
b

πω βπ γω ω α β δ−
⎛ ⎞= − − + − − +⎜ ⎟
⎝ ⎠

⎧ ⎛ ⎞
⎪ ⎜ ⎟+ − − − − <
⎪ ⎜ ⎟

− ⎝ ⎠⎨
⎪

≥⎪
⎩

aor v  

Second condition of stable and unstable manifolds intersection follows  
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2
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The obtained so far Mielnikov’s criterions can be summanted in the following way  

( )
5 3
2 2

2
*2
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*
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0
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Fig. 2 shows thresholds of chaos in the ( )*,vγ  plane obtained from relation (15) for , 

, 

1a b= =

0T 0.1α = , 0.2β = , 0.15δ = , 1ω = . 
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Fig. 2. Thresholds of chaos in the ( )*,vγ  plane 

for , , 1a b= = 0T 0.1α = , 0.2β = , 0.15δ = , 1ω = . 



 

3. Conclusions 

Application of the Melnikov’s method to discontinuous self-excited Duffing oscillator harmonically 

driven and taking into account two homoclinic orbits allowed to get two different analytical criterions 

for chaos occurrence associated with destruction of two homoclinic orbits in the system without 

pertutrbation. The obtained results are in full agreement with the results obtained in reference [3] for 

relatively small belt velocities . *v
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