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ABSTRACT

Chaotic dynamics of a triple physical pendulum is
studied. The introduced mathematical model of
non-linear ODEs is solved numerically and the
obtained results are compared with those yielded
by mesurement equipment of the experimantal rig.
Parameters of the model are: identified by the
minimization of the sum of squares of deviations
between the signal from the simulation and the
signal obtained from the experiment. A good
agreement between results from the experiment and
from simulation is shown in a few examples.
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1 INTRODUCTION

It is well known, that simple pendulum
harmonically excited can exhibit regular or
irmegular behavior, the classical bifurcations (like
saddle-node, symmetry: breaking and period-
- doubling bifurcations), coexisting attractors, etc. [1-
'S}
It can be noticed also an interest focused on
experimental investigation of either simple or
¢oupled mechanical and electronic setup of
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pendulums. As the single or double pendulum in
their different forms are quite often a subject of
experiment [3,6,7], the triple physical pendulum is
rather rarely presented in literature as experimental
model. For example in the work [8] the triple
pendulum excited by horizontal harmonic motion of
the pendulum frame is presented with a few
examples of chaotic attractors.

The present paper is a part of larger project of
investigations [9,10], where the triple physical
pendulum with rigid limiters of motion was
analyzed numerically.

2 EXPERIMENTAL INVESTIGATIONS

The experimental rig of the triple physical
pendulum consists of the following subsystems:
pendulum, driving movement subsystem of the
pendulum, = damping subsystem, and the
measurement subsystem.

Analog signals incoming from measuring devices
(angle sensors) are processed in LabView
measurement software. The modular LabView
measurement package is presently widely used in
industry as complete programmable set of test
instruments which are, in particular, in cooperation
with the well developed block-diagram building
software. Dynamic data acquisition is made with
the use of the following test instruments: chassis
PXI-1011, SCXI-1125 module installed in the



chassis, the terminal block SCXI-1313 (high-
attenuator), which are in cooperation with the PCI-
6052E PC computer’s card.

The LabView software environment offers the
complete library of numerical and mathematical
tools which allow processing of experimental data.
Blocks are connected by lines of various colors and
pattern in the environment and represent some pre-
defined application procedures (reading and writing
to channel inputs and outputs, numerical analysis).
The series of measured data are possible to be
stored in text files and then showed on any
waveforms graphs.
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Figure 1. Main block diagram in the LabView
scheme.
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F igufe 2. Time histories (a) and velocity ;
dependencies (b) of the pendulum’s links.
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The main diagram of the measurement-calculating
blocks is presented in Figure 1. This diagram has
been used to measure all signals incoming from
angle sensors installed directly on the three
pendulum links. The signals are then stored as data
in the floating point representation in computer’s
memory.

In Figure 1 in the main loop running until the break
of measurements appears the following general
blocks are observed (starting from the left hand
side): Wave -for measurement of data from
hardware channels; Array Element -for simple
extraction of the measured data appearing in
measuremerit channels as a waveform generated
with a sample period; Constant, Substract, Divide -
mathematical transformations for signals scaling in
degrees; Derivative, IR Filter -numerical
transformations of series of the stored data for the
velocity of the three pendulum’s links calculation
and the filtering process of them, respectively; For -
conditional loop for data preparing to draw; Bitmap
Graph -graphical interfaces with the optional
parameters of graphs.

The previously described process of data
acquisition has been used in measurements on the
pendulum’s real laboratory rig. Graphs which were
made thanks to graphical interface of the diagram
presented in Figure 1 are presented in Figures 2-4.

It visible in Figure 2 that the pendulum’s links
motion is 3-, 4-, and S5-periodic as well. The
amplitude of the first link is about 20°, while the
amplitudes of the others is at the same value about

30°. Changes of angular velocity of the pendulum’s
links are visible in Figure 2b. It can be observed
that the first link rotates with the velocity above
three times less then the next two. A comparison of
the time changes of both angle and angular velocity
of the pendulum’s links presented in Figure 2 brings
an natural conclusion, the same angles of rotation
of links 2 and 3 have another values of angular
velocities. :

On the basis of location characteristics presented in
Figure '3 the sets of relative location of the
appropriate links are possible to find. For example,
if the first pendulum’s link was observed in the zero
angle position, the third of them could be observed
only in positions of +5° and —15° (see Figure 3).
In such a way and on the basis of various



combinations it possible to determine other location
- compositions of links of the investigated pendulum.

PN b

30 !!
20 i3

A

W YR
¥ st

0 [ 2.5 0 4

ye? DU I

10 Y] ;o

3

20 )

L4 ..

aff]

0 2 3 4

e 0w 0 o

Figure 3. Location characteristics of the pendulum’s
links.

An experimental phase space projection on the
phase planes of pendulum’s links has been shown in
Figure 4. According to the earlier conclusions,
pendulum’s links.rotate in a periodical manner what
is exactly proved by the loops visible in the figure.
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Figure 4. Phase space projections on the planes
al@), aa,), as(a,).

3 MATHEMATICAL MODEL

As a physical model of the real system presented in
previous section, we use the system of three
rotationally coupled rigid bodies moving in the
vacuum, in the gravitational field of acceleration
g, shown in Figure 5. The pendulum moves in the

plane and its position is determined by three angles
v, (i=1,2,3). In the joints O, the viscous
damping with the coefficient ¢, (i=1,2,3). is
present. It is assumed that the mass centers of the
links lie on the lines including the joints and one of

the principal central inertia axes (z,;) of each link

is perpendicular to the pendulum movement plane.
The masses of the pendulums are m, and the

moments of inertia with respect to the axes z; are

J,; (i=1,2,3), respectively.

Figure 5. Model of the triple physical pendulum.

The first pendulum is externally excited by the
square-shape moment of the force f(f) with the

amplitude ¢, angular velocity @ and with the
initial phase ¢, , as shown in Figure 6.
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Figure 6. The external forcing function.

The governing equations of the system presented in
Figure 5 follow

M(y)y + Ny’ +Cy +pw) =£.() M
Where:
My)=
B Ncos(y,—v,) Ny cos(y, —¥5)

Ny, cos(y, "‘W 2) B,
N cos(y, —y,;) Nycos(y, —v;)

Nycos(y,—,) |»
B,
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Nw)=
0 N, sin(y, -y,) NuSin('l’l_'l’J)
=N, sinfy, ~y,) 0 Ny sin(y, -y3) |,
~Nssinfy, —y;) =Ny sily, —y,) 0
g+, — 0 M, siny,
C=| - ot - PY)=\M,siny,,
0 < 4 M;siny;,
@ ¥, v, (19
Lo={ 0 1, v={w,}, v={y,Q0l
0 ¥s Vs
v, v,
v . .2 .2
V=1V W SV
W, w3

The parameter vector of the pendulum is

~u=[Bl’BZ’BS’le’IVIS’NZ:UM]’Mz’M;a (3)
€5C3,C ),
where
BI =‘]zl +elzml +l|2(m2 + m3)a (4)

B, =J,+eim,+m,,
By =J,+eim,,
N, =mye,l, + ml L,
Ny =mel,
Ny =myeyl,, v
M, =mge, +(m, +m))gl,
M, =m,ge, + mgl,,
M, =m.ge,.
Note that the parameters of the external forcing
(q,®,9) are treated separately. For more details

on the triple pendulum equations and their
derivation see works [9,10].

4 PARAMETER IDENTIFICATION
In order to identify the model parameters u, firstly

we lead to- the experimental stand the external
forcing (input signal) of the known parameters:
q=2Nm, f, =04Hz and ¢, =0.163rad (where
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/., =a/2x). Then the response (output signal)
v (1) (i=1,2,3) of the real system starting from
7(0)=0,
i=1,2,3) is measured on time interval ¢ €[0,z,] as
the following time series

zero initial conditions (y (0)=0,

WO00%, 0™, (=1,2,3), (5)
where
GO =g kA, k=012,...N, A’=’;‘,

and where 7, =100s and N =10 (Ar=0.0ls)

were taken.

We want to find such a vector x4, for which the
model matches the real system most of all in the
sense of the least deviation between the output
signals from the model and the real pendulum.
Therefore we define the following criterion-
function of matching the output signals

X _n2 (6)
F)=YY w* -
i=l k=0
where
v =y, (kAr)

is the output signal of the model for the same input
signal and initial conditions, obtained from
numerical simulation. The global minimum of
F(u) is now the solution of the problem.

The MATLAB environment for evaluation and
minimum searching of the function F(u) is used.
For minimum finding the simplex search method is
used that does not use numerical or analytic
gradients, and finds a local minimum of a scalar
function, starting at an initial estimate. First we
roughly estimate the parameter vector and use it as
a starting point x4, in the procedure to find Hop

with the following elements

B, =0.1547 kgm’, @)
N, =0.1176 kgm?,
N,, =0.0452 kgm?,
M, =5.6508 kgm®/s’,
¢, =0.1203 kgm?/s,
¢, =0.0028 kgm’/s.

B =02705kgn?,

B, =0.0480 kgm?,
N,, =0.0776 kgm?,
M, =11.020 kgm’/s?,
M, =3.7383 kgm?/s?,
¢, =0.0025 kgm?ss,



which minimize the function F(x) at least locally

and, as shown in the next section, gives a good
agreement between the model and the real system.

5 NUMERICAL RESULTS

Here some examples of numerical simulations of
the triple pendulum model together with
corresponding experimental results from the real
object are presented. The model simulations are
performed for the optimal parameter vector u,,

N, zero initial conditions
(v;(0)=0, (0)=0,i =1,2,3), for the excitation
amplitude ¢=2Nm and the phase
¢, =0.163rad. The . experimental results are
obtained for the same input signal:and zero initial
conditions.

Figures 7-9 show periodic solutions obtained
numerically (black line) compared with the
experimental data (grey line) for the excitation
frequency f equal to 0.4, 0.6 and 0.8Hz
respectively. In order to eliminate a transient
motion, solutions are restricted to the time interval
1 €{200s,300s]. As it is seen, the results from the
model match the results from the object very well.
Moreover, the numerical simulation shows
existence of a chaotic region near the frequency
f.,=0.7Hz. It is in a good agreement with the

obtained experimental results.
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Figure 7. The experimental (grey line) and
numerical (black line) results for f, =0.4 Hz.
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Figure 8. The experimental (grey line) and
numerical (black line) results for f, = 0.6 Hz.
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Figure 9. The experimental (grey line) and
numerical (black line) results for f, =0.8 Hz.

6 CONCLUDING REMARKS

In the paper an experimental stand of the triple
physical pendulum and the corresponding
mathematical model have been presented. The
pendulum is a rich source of nonlinear dynamics
phenomena. Furthermore, it can be used for
modeling of a number of real objects being
observed in nature and engineering. One can
mention for example about arms of robots and
cranes. A subtle reconstruction of that pendulum’s
experimental rig can be made by adding a few
obstacles bounding the rotational motion of its last
link. Such an operation will provide a possibility
for modeling of the piston -connecting rod -
crankshaft system moving in a cylinder with
backlash.,



The model parameters identification have been
performed by “the’ “iinimization . of the scalar
criterion-furiction in the form,of the sum of squares
of deviations between * the numerical and
experimental series. It should be noted, that the

parameter vector 4, which minimizes the

function (29), is optimal in the sense of best
matching of output signals of the model and the real
object. Therefore, it unnecessarily matches best the
real physical parameters of the object, that can be
computed from (27). As shown in section 5, the
numerical simulation of the model for parameters

Hop » can be successfully used for the prediction of
behavior of the real triple physical pendulum.
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